- Poster presentation
- Open access
- Published:
Influence of action potential onset rapidness to dynamic response of cortical neurons
BMC Neuroscience volume 10, Article number: P327 (2009)
Introduction
Neurons can track fast signal through population coding.In principle, there are two separate channels for signal encoding, the mean synaptic current and the amplitude of synaptic noise. Experiments indicate that ensembles of cortical neurons behave like a low-passed filter with a high cut-off frequency and that the response speed for noise coded signal is much faster than that for mean current coded signal [1–3]. It has been shown numerically that details of action potential (AP) generation mechanism of single neurons play an important role in the dynamical response of neuronal populations [4, 5].We constructed a new dynamic model of AP generation in which the onset rapidness r of AP initiation is a freely variable parameter and which is analytical solvable. The r - τ model reduces to the leaky integrate and fire model (LIF) for infinite r and to the perfect integrator model for zero r. For finite r the impact of dynamic AP generation for linear response is accessible to rigorous analysis. We find that the linear response decomposes into two parts: one part approaches zero when the absorbing boundary is moved to infinity, indicating an artifact of the model; the other part possesses only a weak dependence on the boundary and reproduces the results for LIF neurons for r → ∞. This part reflects the dynamics of AP generation. We find that when the onset rapidness is large, the cut-off frequency for noise coded signal will be proportional to the onset rapidness, while for mean current coded signal it is constrained by the membrane time constant (Fig. 1). Since the onset rapidness of APs was found experimentally to be very large [6], our model explained why the response speed can be much faster for variance coded signal than for mean current coded signal.
References
Silberberg G, Bethge M, Markram H, Pawelzik K, Tsodyks M: Dynamics of population rate codes in ensembles of neocortical neurons. J Neurophysiol. 2004, 91: 704-709. 10.1152/jn.00415.2003.
Köndgen H, Geisler C, Fusi S, Wang XJ, Lüscher HR, Giugliano M: The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex. 2008, 18: 2086-2097. 10.1093/cercor/bhm235.
Boucsein C, Tetzlaff T, Meier R, Aertsen A, Naundorf B: Dynamical response properties of neocortical neuron ensembles: multiplicative versus additive noise. J Neurosci. 2009, 29: 1006-1010. 10.1523/JNEUROSCI.3424-08.2009.
Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N: How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci. 2003, 23: 11628-11640.
Naundorf B, Geisel T, Wolf F: Action potential onset dynamics and the response speed of neuronal populations. J Comput Neurosci. 2005, 18: 297-309. 10.1007/s10827-005-0329-8.
Naundorf B, Wolf F, Volgushev M: Unique features of action potential initiation in cortical neurons. Nature. 2006, 440: 1060-1063. 10.1038/nature04610.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Wei, W., Wolf, F. Influence of action potential onset rapidness to dynamic response of cortical neurons. BMC Neurosci 10 (Suppl 1), P327 (2009). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1471-2202-10-S1-P327
Published:
DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1471-2202-10-S1-P327