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Abstract
Purpose The aim of this retrospective study was to investigate whether radiomics features derived from 
hippocampal functional imaging can effectively differentiate cognitively impaired patients from cognitively preserved 
patients with Parkinson’s disease (PD).

Methods The study included a total of 89 clinically definite PD patients, comprising 55 who werecognitively 
impaired and 34 who were cognitively preserved. All participants underwent functional magnetic resonance imaging 
and clinical assessments. Preprocessed functional data were utilized to derive the amplitude of the low-frequency 
fluctuations (ALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), and degree 
centrality (DC). A standardized set of radiomics features was subsequently extracted from the bilateral hippocampi, 
resulting in a total of 819 features. Following feature selection, the radiomics score (rad-score) and logistic regression 
(LR) models were trained. Additionally, the Shapley additive explanations (SHAP) algorithm was employed to elucidate 
and interpret the predictions made by the LR models. Finally, the relationships between the radiomics features 
derived from hippocampal functional imaging and the scores of the clinical measures were explored to assess their 
clinical significance.

Results The rad-score and LR algorithm models constructed using a combination of wavelet features extracted from 
ReHo and VMHC data exhibited superior classification efficiency. These models demonstrated exceptional accuracy, 
sensitivity, and specificity in distinguishing cognitively impaired PD patients (CI-PD) from cognitively preserved PD 
(CP-PD) patients, with values of 0.889, 0.900, and 0.882, respectively. Furthermore, SHAP values indicated that wavelet 
features derived from ReHo and VMHC were critical for classifying CI-PD patients. Importantly, our findings revealed 
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Introduction
Cognitive impairment is one of the most prominent non-
motor symptoms of Parkinson’s disease (PD). Individuals 
diagnosed with PD are six times more likely to experience 
cognitive impairment than their healthy counterparts 
are. This condition significantly impacts patients’ social 
functioning and quality of life [1]. Cognitive symptoms 
occur in up to 40% of PD patients in the early stages and 
sometimes appear before the onset of motor symptoms. 
Owing to the varied clinical presentations of cognitive 
impairment, its diagnosis remains a challenge in clinical 
practice.

Recent studies have emphasized the significant role of 
the hippocampus in the occurrence and progression of 
cognitive impairment in PD [2]. Both the structure and 
function of the hippocampus have attracted consider-
able attention as potential neural underpinnings of cog-
nitive decline [3, 4]. The relationship between atrophy 
in specific subregions of the hippocampus and cogni-
tive deterioration in PD patients indicates that changes 
in hippocampal morphology could facilitate the early 
detection of cognitively impaired PD (CI-PD) patients [5, 
6]. Furthermore, functional magnetic resonance imag-
ing (fMRI) studies have demonstrated that alterations 
in hippocampal activity patterns during cognitive tasks 
are consistent with cognitive dysfunction [7]. A recent 
study examining regional variations in gene expression in 
PD patients with mild cognitive impairment (PD-MCI) 
revealed that out of 17,216 genes expressed in the hip-
pocampus, 104 genes exhibited differential expression in 
a PD-MCI mouse model [8]. Collectively, these studies 
support the potential of the hippocampus as an early pre-
dictor of CI-PD.

Resting-state fMRI (rs-fMRI) provides a novel 
approach for investigating the brain, making it an ideal 
tool for studying neurodegenerative diseases character-
ized by brain disconnection syndrome [9]. In the context 
of CI-PD, rs-fMRI has been employed to explorealtera-
tions in intrinsic brain activity, revealing the significant 
role of the hippocampus in the cognitive decline asso-
ciated with this condition [7]. Previous studies have 
demonstrated decreased hippocampal functional con-
nectivity in PD patients [10, 11], as well as reduced 

degree centrality (DC) and regional homogeneity (ReHo) 
values linked to cognitive impairment [12–14]. Hip-
pocampal regional dysfunction may serve as an early 
biomarker for CI-PD, although its recognition remains 
inconsistent across studies [14]. Some studies have sug-
gested that functional changes in the hippocampus might 
precede structural alterations [15–17]. However, translat-
ing these rs-fMRI findings into clinical practice remains a 
challenge. Despite advances in neuroimaging, the appli-
cation of hippocampal functional imaging in diagnos-
ing cognitive impairment in PD remains underexplored. 
While traditional imaging techniques have provided 
valuable insights into the structural changes in PD, there 
is a pressing need for more sophisticated approaches, 
such as radiomics, to extract and analyse subtle func-
tional abnormalities that may precede clinical symptoms.

Radiomics, a morphological method for image analy-
sis widely utilized in tumor imaging [18], quantitatively 
detects numerous texture features, allowing for the iden-
tification of complex patterns that are not visible to the 
naked eye. In CI-PD patients, the grayscale distribution 
of functional images reflects altered blood oxygen level-
dependent (BOLD) signals, which are attributed to the 
regional heterogeneity of neuronal damage within the 
hippocampus. The higher-order information, including 
texture features contained in the BOLD signal, may gen-
erate a unique imaging characteristic even prior to the 
manifestation of macroscopic structural changes. There-
fore, radiomics can also extract higher-order information 
that reflects the complexity of neuronal activity in the 
region of interest. In the context of PD, the application 
of radiomics to hippocampal functional imaging holds 
promise for detecting early cognitive decline with greater 
accuracy than traditional imaging methods.

In this study, we hypothesized that hippocampal 
radiomics features derived from rs-fMRI could effec-
tively distinguish patients with CI-PD from other PD 
patients. Furthermore, we posited that rs-fMRI data, 
including ReHo, amplitude of low-frequency fluctuation 
(ALFF), DC and voxel-mirrored homotopic connectivity 
(VMHC), would partially reflect detailed neuropsycho-
logical assessments. To achieve this goal, we employed 
supervised machine learning algorithms to construct a 

significant associations between radiomics wavelet features and scores on the Hamilton Anxiety Scale, Non-Motor 
Symptom Scale, and Montreal Cognitive Assessment in CI-PD patients (P < 0.05, with Bonferroni correction).

Conclusions Our novel rad-score model and LR model, which utilize radiomics features derived from hippocampal 
functional imaging, have demonstrated their value in diagnosing CI-PDpatients. These models can enhance the 
accuracy and efficiency of functional MRI diagnosis, suggesting potential clinical applications.

Clinical trial number Not applicable.
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radiomics model based on hippocampal rs-fMRI deriva-
tives aimed at differentiating between PD patients with 
and without cognitive deficits. Our objective was to 
explore the potential value of hippocampal functional 
imaging-derived radiomics features as imaging biomark-
ers for evaluating cognitive decline in PD patients and 
to investigate the correlation between these radiomics 
scores and cognitive function scores.

Materials and methods
Participants
A total of 102 PD patients were recruited from the 
Department of Neurology at the First Affiliated Hospital 
of Nanchang University between August 2020 and Octo-
ber 2023. All the subjects were right-handed and had no 
contraindications for MRI. The inclusion criteria were as 
follows: [1] met the Movement Disorder Society (MDS) 
clinical diagnostic criteria for PD; [2] were aged above 
18 years; and [3] Hoehn–Yahr stage < 5. The exclusion 
criteria were as follows: [1] severe heart, liver, or kidney 
diseases; [2] severe mental illness; [3] inability to cooper-
ate with MRI examination and clinical evaluation; and [4] 
abnormal brain structural changes on conventional MRI. 
MRI scans and clinical symptom assessments were per-
formed for all the subjects.

This study was conducted in accordance with the Dec-
laration of Helsinki, and ethical approval was obtained 
from the Ethics Committee of the First Affiliated Hos-
pital of Nanchang University (No. IIT2022124). Written 
informed consent was obtained from all participants or 
their legal guardians prior to their involvement in the 
study.

Clinical assessment and grouping
Each participant underwent a series of neuropsychologi-
cal tests designed to assess various aspects of their con-
dition. The severity of motor symptoms was evaluated 
using the Unified Parkinson’s Disease Rating Scale Part 
III (UPDRS-III) [19], with higher scores indicating more 
severe motor impairment. Non-motor symptoms were 
assessed using the Non-Motor Symptom Scale (NMSS) 
[20] for PD, where higher scores reflect more severe non-
motor impairment. Disease staging was determined by 
the Hoehn–Yahr stage. Quality of life was assessed using 
the Parkinson’s Disease Questionnaire-39 (PDQ-39) scale 
[21], with higher scores indicating a lower quality of life. 
Depression severity was evaluated using the Hamilton 
Depression Scale (HAMD-24) [22], which consists of 24 
items, whereas anxiety severity was assessed with the 
Chinese version of the Hamilton Anxiety Scale (HAMA) 
[23], where higher scores indicate greater severity. Addi-
tionally, demographic information, including age, sex, 
years of education, and disease duration, was collected 
for each participant.

Cognitive status was evaluated using the Montreal 
Cognitive Assessment-Beijing Version (MoCA-BJ)(www.
mocatest.org) [24, 25]. For participants with less than 
12 years of education, 1 point was added to their MoCA 
score [26, 27]. According to the MDS Working Group-
group level 1 criteria [28], a MoCA score < 26 was defined 
as a CI-PD. Those who did not meet these criteria were 
classified as cognitively preserved PD patients (CP-PD).

MRI data acquisition and preprocessing
MRI protocol
All the subjects underwent MRI scans using a GE 
3.0T-SIGNATM Pioneer MRI scanner (GE Healthcare, 
Milwaukee, WI, USA) equipped with a 24-channel head 
coil. To effectively minimize head movement, comfort-
able foam padding was provided to the subjects. More-
over, earplugs were given to them to reduce the noise 
generated by the scanner. Before the structural MRI 
data were collected, routine clinical sequences, such as 
T2-weighted imaging (T2WI), T2 fluid attenuated inver-
sion recovery (T2-FLAIR), MR angiography (MRA), and 
Diffusion weighted imaging (DWI), were obtained to 
detect any brain abnormalities.

High-resolution 3D T1-weighted structural images 
were acquired for each subject using a 3D T1 spoiled gra-
dient echo (SPGR) sequence. The scanning parameters 
were as follows: repetition time (TR) = 8 ms, echo time 
(TE) = 3 ms, field of view (FOV) = 220  mm × 220  mm, 
acquisition matrix = 220 × 220, flip angle (FA) = 12°, slice 
thickness = 1  mm, slice gap = 0.5, voxel size = 1 × 1 × 1 
mm3, and a total of 180 slices.

Rs-fMRI data were obtained by the gradient-recalled 
echo echo-planar imaging (GRE-EPI) sequence. 
The scanning parameters were as follows: TR = 2000 
ms, TE = 25 ms, FA = 90°, FOV = 190  mm × 190  mm, 
slice thickness = 3.5  mm, matrix = 64 × 64, voxel 
size = 3.0 × 3.0 × 3.5 mm3, interval = 1.2 mm, and a total of 
240 time points.

Data preprocessing
The rs-fMRI data were initially examined using the 
MRIcro software package to remove incomplete image 
extents, artifacts, and significant head motion data. The 
preprocessing pipeline for the images was subsequently 
carried out using the Data Processing Assistant for 
Resting-State fMRI (DPARSF, accessible at  h t t p : / / r f m r i 
. o r g / D P A R S F     ) , which is based on Statistical Parametric 
Mapping (SPM, available at  h t t p  : / /  w w w .  fi   l . i  o n .  u c l .  a c  . u k / 
s p m /). The main steps implemented for the rs-fMRI data 
were as follows: [1] the first 10 volumes of each functional 
time series were removed to account for magnetization 
equilibrium, and slice timing correction was performed 
to enhance BOLD signal stability; [2] head motion was 
corrected by realigning the images to a reference scan; 

http://www.mocatest.org
http://www.mocatest.org
http://rfmri.org/DPARSF
http://rfmri.org/DPARSF
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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[3] the 3D T1-weighted structural images were spatially 
registered to the functional images generated in step 2; 
[4] segmentation of the T1 images into gray matter and 
white matter and cerebrospinal fluid was performed 
using the New Segmentation + DARTEL algorithm, fol-
lowed by normalization of the segmented images to a 
standard template (Montreal Neurological Institute) 
using the DARTEL algorithm; [5] spatial normalization 
of functional images to the Montreal Neurological Insti-
tute template and resampling to a voxel size of 3 × 3 × 3 
mm3; [6] elimination of covariates such as linear drift, 
white matter signals, and cerebrospinal fluid without 
employing global signal regression; [7] application of spa-
tial smoothing with a full width at half maximum kernel 
of 6 mm to the functional images (with the exception of 
ReHo and DC calculations); and [8] filtering of the data 
to a frequency range of 0.01–0.1 Hz to reduce respiration 
and other high-frequency physiological noise.

Calculation of rs-fMRI derivatives
The following rs-fMRI-based derivatives were calculated 
[29]: [1] ALFF is calculated as the amplitude of the time 
series within a certain frequency band (0.01–0.1  Hz), 
which is the average square root of the power spectral 
density of the filtered time series [30]. [2] VMHC quan-
tifies functional homotopy by providing a voxel-wise 
measure of connectivity between hemispheres (with a 
symmetric template) [31]. [3] ReHo is calculated as the 
Kendall coefficient of concordance (KCC) among a seed 
voxel and its 26 neighboring voxels, reflecting the level of 
spontaneous activity in the seed voxel’s vicinity [32]. [4] 
DC is a measure of local network connectivity and identi-
fies the most connected nodes by counting the number 
of direct connections (edges) to all other nodes. Specifi-
cally, Pearson correlation analysis was used to calculate 
the correlation coefficient between the time series of a 
voxel and the time series of other voxels in the subject’s 
brain, and then the correlation coefficients of r > 0.25 
were summed to obtain the degree centrality index of 
the voxel with weight attributes [33]. After all the images 
underwent Z-transformation, the ReHo and DC images 
were spatially smoothed using a Gaussian kernel of 6 mm 
for subsequent analysis.

Radiomics feature extraction and selection derived from 
hippocampal functional imaging
The bilateral hippocampi were segmented using the Ana-
tomical Automatic Labelling (AAL) atlas. Data encapsu-
lation was subsequently carried out using Python 3.7.12 
in conjunction with the Pandas library. This was followed 
by the extraction of a standardized suite of radiomics 
features using the utilizatiion of the open-source Python 
package PyRadiomics (version 3.0.1;  h t t p  s : /  / p y r  a d  i o m  i c 
s  . r e a  d t  h e d o c s . i o /). In total, 819 radiomics features were 

extracted from the hippocampus. These features were 
compoesd of 18 first-order features, 73 textural features, 
and 728 wavelet features for each rs-fMRI derivative (for 
detailed information, please refer to the Supplementary 
Material Table S1).

Among the extracted features, many exhibited high 
redundancy, which complicated classification and 
increased computational complexity. To identify the 
optimal features, all the features were first preprocessed 
through Z-score normalization, with each feature dimen-
sion linearly stretched between [0, 1]. Then, forredun-
dancy elimination, we employed the Spearman rank 
correlation test to evaluate the linear correlation between 
individual features. If two features exhibited a stronger 
correlation, the absolute value of their correlation coef-
ficient would be greater. When the Spearman correlation 
coefficient between any two features was greater than 0.9, 
we selected one feature for subsequent analysis using a 
greedy algorithm for feature selection. We subsequently 
used the least absolute shrinkage and selection opera-
tor (LASSO) regression model to identify the optimal 
radiomics features with non-zero coefficients regarded 
as valuable predictors [34, 35]. The LASSO regression 
model is the most commonly used feature selection 
method [36]. This study employed LassoCV in conjunc-
tion with 10-fold cross-validation to automatically select 
the optimal λ value, thereby optimizing the feature selec-
tion process. Specifically, LASSO regression improves 
the model’s predictive performance and stability by inte-
grating the least squares method—which minimizes pre-
diction error—with L1 regularization, which imposes 
a penalty on the L1 norm of the regression coefficients. 
This approach efficiently selects features while adjusting 
the regularization intensity (α).

Radiomics score derived from hippocampal functional 
imaging
The features selected using LASSO were utilized to con-
struct a radiomics score (rad-score), which is a quanti-
tative index derived from radiomics features. For each 
patient, this score was calculated by a linear combina-
tion of the selected features, weighted by their respective 
coefficients. For more detailed information, please refer 
to the formula provided in Supplementary Material item 
2.

Receiver operating characteristic (ROC) curve analysis 
and Youden’s index were employed to determine the opti-
mal threshold of the radscore for differentiating between 
CI-PD patients and CP-PD patients. This process was 
confined to the training cohort framework, meaning 
that the rad-score threshold was generated entirely from 
the data of the training cohort. The area under the ROC 
curve (AUC) was used to evaluate the performance. The 
sensitivity and specificity, along with their corresponding 

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/


Page 5 of 15Zeng et al. BMC Neuroscience           (2025) 26:27 

95% confidence intervals (CIs), were computed. More-
over, the rad-score was generated for patients in the 
internal validation cohort to validate the model. Specifi-
cally, the selected threshold was applied to the validation 
cohort to obtain metrics such as sensitivity, specificity, 
accuracy, and other relevant metrics.

Machine learning model constructed with hippocampal 
radiomics features
After feature selection, the discriminative ability of 
radiomics features in distinguishing between CP-PD 
patients and CI-PD patients was evaluated. Machine 
learning classification models were constructed using 
Python 3.7.12 and the Scikit-learn library. The patients 
were divided into training and validation cohorts at 
a 7:3 ratio. To address the unequal distribution of the 
two classes, we used a balanced sampling technique, 
namely, the synthetic minority oversampling technique 
(SMOTE). The features selected from the training cohort 
were used as input vectors for logistic regression (LR) to 
train the classification model, which was subsequently 
validated in the validation cohort.

The diagnostic performance of the radiomics models 
was evaluated using the area under the curve (AUC) of 
the receiver operating characteristic (ROC) curve in both 
the training and validation cohorts, alongside quantita-
tive indicators such as accuracy (ACC), sensitivity (SEN), 
and specificity (SPE). Decision curve analysis (DCA) was 
conducted to evaluate the clinical utility of the prediction 
models in the validation cohort.

Understanding and determining the significance and 
impact of each feature in predictive models presents a 
considerable challenge. The Shapley additive explana-
tions (SHAP) analysis serves as a valuable tool for evalu-
ating feature importance. Unlike black-box models, such 
as deep neural networks, SHAP analysis elucidates the 
relationship between inputs and outputs through a series 
of easily interpretable if-then rules. This methodology 
provides a globally interpretable framework that employs 
optimal Shapley values to quantify the contribution of 
each feature within the model. Furthermore, SHAP anal-
ysis delivers interpretable predictions for machine learn-
ing classifiers, effectively addressing the limitations of 
traditional models that often lack clear feature direction-
ality. In the context of diagnosing cognitively impaired 
patients with Parkinson’s disease, SHAP-based feature 
selection offers a more interpretable approach for assess-
ing the importance of hippocampal functional image-
derived radiomics features.

Different combinations of radiomics features for modelling
Each radiomics feature of the derivative/connectivity 
measurements captures a distinct aspect of the informa-
tion conveyed by rs-fMRI and may play a unique role in 

differentiating between patients with PD-CP and those 
with PD-CI. In addition to the previously mentioned 
combination of features (ALFF + DC + ReHo + VMHC), 
14 other combinations were examined, such as 
ALFF, DC, ReHo, VMHC, ALFF + ReHo, ALFF + DC, 
ALFF + VMHC, DC + ReHo, DC + VMHC, 
ReHo + VMHC, ALFF + DC + ReHo, ALFF + DC + VMHC, 
ALFF + ReHo + VMHC, and DC + ReHo + VMHC. The 
analysis methodology for these combinations was simi-
lar to that used for ALFF + DC + ReHo + VMHC. A com-
parison was made between the results obtained using 
15 combinations, with a focus on the classification 
outcomes.

Statistical analysis
Statistical analyses were performed using GraphPad 
Prism 9 (GraphPad, San Diego, CA, USA) and IBM SPSS 
Statistics (Version 21.0, USA). Chi-square tests were 
used to compare categorical variables, whereas 2-sample 
t tests or Mann–Whitney U tests were used to compare 
quantitative variables to evaluate the differences in the 
clinical characteristics of patients. All tests were two-
sided, with statistical significance set at P < 0.05.

To explore the relationships between radiomics fea-
tures and clinical measures, a partial correlation analysis 
was performed between the selected features and clini-
cal scale scores (MoCA scores, UPDRS-III scores, NMSS 
scores, PDQ-39 scores, HAMA scores, HAMD scores, 
BMI, years of education, and disease duration) in patients 
with CI-PD and CP-PD, with age considered a covariate 
(P × n < 0.05, Bonferroni correction).

To investigate the significance of the performance of 
the rad-score model and LR model in different combina-
tions, the differences between various AUCs were com-
pared using the DeLong test.

Results
Demographic and clinical data profiling
Among the 102 patients initially recruited, a total of 13 
patients were excluded from the study. This exclusion 
consisted of four individuals due to incomplete MRI 
examinations, four for not completing the clinical scales, 
and five for excessive head movement. The final analysis 
included 89 PD patients, comprising 34 CP-PD patients 
and 55 CI-PD patients. The patients were randomly 
divided into a training cohort and a validation cohort at 
a 7:3 ratio. The data of the validation cohort were used 
to evaluate the performance of the models. The demo-
graphic and clinical data are presented in Table 1. Nota-
bly, CP-PD patients had a higher education level than 
CI-PD patients did. However, there were no significant 
differences between the two groups in terms of age, sex, 
UPDRS-III score, NMSS score, PDQ-39 score, HAMA 
score, HAMD score, BMI score, or disease duration.



Page 6 of 15Zeng et al. BMC Neuroscience           (2025) 26:27 

Hippocampal functional radiomics features selection
For 3276 (819 × 4)features, following feature screen-
ing based on a Spearman correlation coefficient thresh-
old of > 0.9, a total of 776 features (24%) were retained. 
This included 170 ALFF features (22%), 187 DC features 
(24%), 184 ReHo features (24%), and 235 VMHC features 
(30%). Subsequently, LASSO regression was applied for 
feature selection, identifying non-zero coefficients as 
valuable predictors within each feature group. Ultimately, 
8 ALFF features, 6 ReHo features, 8 DC features, and 10 
VMHC features were retained for distinguishing between 
patients with CI-PD and those with CP-PD (refer to 
Fig. 1; Table 2). These radiomics features encompassed 8 
features from ALFF, 6 from ReHo, 10 from VMHC, and 
8 from DC. Notably, all the selected features were wave-
let features, with particular significance attributed to 
the VMHC wavelet features in distinguishing between 
CI-PD and CP-PD patients. Additional results for vari-
ous feature combinations using the same feature selec-
tion strategy were presented in Supplementary Material 
Tables S2–15. Similarly, the results for features selected 
from the GMV are presented in Supplementary Material 
Table S16.

Classification performance of the hippocampal functional 
radiomics score
The classification performance of the hippocampal 
functional rad-score, derived from selected radiomics 
features, including 15 combinations, is presented in 
Supplementary Material Table S17. Notably, the com-
bination-based rad-score was constructed using two 
functional derivatives (ReHo and VMHC), resulting in 

superior classification performance, with an AUC of 
0.941. Furthermore, all the evaluation metrics, includ-
ing the ACC, SPE, and SEN, exceeded 0.850. The optimal 
cut-off value for distinguishing between CI-PD patients 
and CP-PD patients in the training cohort was deter-
mined to be 0.429 on the basis of Youden’s index derived 
from the ROC curves (Fig. 2A). This threshold not only 
sensitively discriminated between patients with CI-PD 
and CP-PD in the training cohort (Fig. 2B) but also effec-
tively distinguished between these two groups, achieving 
high values of ACC (0.889), SPE (0.900), and SEN (0.882) 
(Fig. 2C and Table S17).

Classification performance of the machine learning model
The LR models were trained using 32 selected radiomics 
features derived from ALFF, ReHo, VMHC, and DC, with 
15 combinations shown in Fig. 3; Table 3. Compared with 
those derived from a single functional derivative, the 
radiomics features obtained from combined functional 
derivatives demonstrated superior performance. Nota-
bly, the model constructed using radiomics features from 
two functional derivatives (ReHo and VMHC) achieved 
an AUC value of 0.906 for the validation dataset, with the 
ACC, SEN, and SPE values all exceeding 0.850. Further-
more, the results of the DCA demonstrated that the LR 
model constructed with the combined radiomics features 
of ReHo and VMHC has potential for clinical application 
(see Supplementary Material Figure S1). The high net 
benefit and stable change over a wide range of threshold 
probabilities indicate that the model has good general-
izability and consistent performance. Additionally, the 
classification performance of the models constructed 
using radiomics features from GMV is presented in Sup-
plementary Material Table S18.

This study compared the diagnostic performance of the 
rad-score models and LR models, as well as various com-
binations within these groups. The DeLong test was uti-
lized to analyse the performance of the models, with the 
results presented in Supplementary Material Tables S19–
21. When comparing the combination of ReHo + VMHC 
within the rad-score models, although the AUCs for DC, 
DC + ReHo, and ALFF + ReHo + VMHC were greater, 
their differences lacked statistical significance, as indi-
cated by the DeLong test results (refer to Supplementary 
Material Table S19). In the LR models, the combination 
of ReHo + VMHC showed that the addition of ALFF or 
DC did not significantly enhance model performance. 
In contrast, incorporating both ALFF and DC yielded a 
higher AUC of 0.944, but this difference was not statis-
tically significant according to the results of the DeLong 
test (see Supplementary Material Table S20). For the 
combination of ReHo + VMHC, the AUCs of the rad-
score models were not significantly different from those 

Table 1 Demographic and clinical characteristics of CI-PD and 
CP-PD patients

PD-CI 
(N = 55)

PD-CP 
(N = 34)

P value

Gender (M/F) 29/26 19/15 0.772a

Age, years (mean ± SD) 61.56 ± 7.61 56.68 ± 10.39 0.039b

BMI (mean ± SD) 22.02 ± 2.68 22.92 ± 1.98 0.193 b

Education years (median (IQR)) 5.00 (4.00) 9.00 (5.00) < 0.001c

Disease duration, years (me-
dian (IQR))

3.50 (3.00) 2.00(2.60) 0.091 c

Montreal Cognitive Assess-
ment (median (IQR))

18.00 (7.00) 27.00 (1.00) < 0.001c

HAMA (median (IQR)) 10.00 (11.00) 9.00 (11.00) 0.273 c

HAMD (median (IQR)) 10.00 (8.00) 6.00 (8.00) 0.130 c

UPDRS-III (mean ± SD) 41.05 ± 13.38 34.12 ± 13.33 0.475b

NMSS (mean ± SD) 53.13 ± 33.94 47.35 ± 29.32 0.197 b

PDQ-39 (mean ± SD) 46.75 ± 20.45 38.41 ± 23.11 0.188 b

Note: CP-PD, cognitively preserved Parkinson’s disease; CI-PD, cognitively 
impaired Parkinson’s disease; HAMD, Hamilton Depression Scale; HAMA, 
Hamilton Anxiety Scale; NMSS, Non-Motor Symptom Scale; UPDRS-III, 
Unified Parkinson’s Disease Rating Scale Part III; PDQ-39, Parkinson’s Disease 
Questionnaire-39; F, female; M, male; SD, standard deviation; IQR, interquartile 
range; a, chi-square test; b, 2-sample t test; c, Mann‒Whitney U test
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of the LR models (details in Supplementary Material 
Table S21).

SHAP analysis of the ReHo + VMHC model 
revealed that the features VMHC_wavelet-
LLL_GLscrcrshortareal_owgrayLe velEmphasis , 

ReHo_wavelet-LLL_GLscrcrsmallarealowgrayLevelEm-
phasis, and VMHC_wavelet-HLL_glcm_Correlation are 
significant indicators for diagnosing CI-PD (see Fig. 4A). 
Furthermore, similar results were observed in the SHAP 
analysis of the combined ALFF + ReHo + DC + VMHC 

Fig. 1 Radiomics features dimension reduction. (A) LASSO coefficient profiles of the features. Different color lines show the corresponding coefficient of 
each feature. (B) Tuning parameter (lambda) selection in the LASSO model. (C) Selected feature weight coefficients, Note: LASSO, least absolute shrink-
age and selection operator; MSE, mean square error; ALFF, amplitude of low-frequency fluctuations; ReHo, regional homogeneity; DC, degree centrality; 
VMHC, voxel-mirrored homotopic connectivity

 



Page 8 of 15Zeng et al. BMC Neuroscience           (2025) 26:27 

model (see Fig.  4B). The SHAP summary plot for the 
remaining 13 models is available in the Supplementary 
Materials, Figure S2-S4.

Correlation analysis
A study conducted on the CI-PD and CP-PD groups 
revealed significant correlations between various brain 
imaging features and clinical assessment scores (see 
Fig. 5, Supplementary Material Table S22-24).

In CI-PD patients, a positive correlation was detected 
between ALFF-derived wavelet features (wavelet-
HHL_glcm_Idmn) and MoCA scores (r = 0.376, 
p = 0.007 × 7 < 0.05, with Bonferroni correction); a nega-
tive correlation was detected between ALFF-derived 
wavelet features (wavelet-HHL_glcm_Idn) and HAMA 
scores (r = -0.376, p = 0.006 × 7 < 0.05, with Bonferroni 
correction); and a positive correlation was detected 
between DC-derived wavelet features (wavelet-LHL_
firstorder_TotalEnergy) and NMSS scores (r = 0.410, 
p = 0.003 × 7 < 0.05, with Bonferroni correction).

In CP-PD patients, positive correlations were iden-
tified between DC-derived wavelet features (wave-
let-LHL_firstorder_TotalEnergy) and PDQ-39 scores 
(r = 0.579, p = 0.001 × 7 < 0.05, with Bonferroni correc-
tion), as well as between DC-derived wavelet features 
(wavelet-LHL_firstorder_TotalEnergy) and UPDRS-III 
scores (r = 0.483, p = 0.005 × 7 < 0.05, with Bonferroni cor-
rection). Conversely, a negative correlation was found 
between DC-derived wavelet features (wavelet-HLH_
firstorder_Skewness) and HAMD scores (r = -0.557, 
p = 0.001 × 7 < 0.05, with Bonferroni correction).

Discussion
This study emphasized the predictive performance within 
a radiomics framework. The findings of our study dem-
onstrate that the novel rad-score and LR model, which is 
based on radiomics features derived from hippocampal 
functional imaging, may serve as a valuable tool for clini-
cal diagnosis by effectively distinguishing between CI-PD 
patients and CP-PD patients. The combination of wavelet 
features extracted from ReHo and VMHC demonstrated 
superior performance compared with other combined 
features in both the rad-score classification and the LR 
models. Our findings highlight the clinical relevance of 
hippocampal functional radiomics features. To the best 
of our knowledge, this is the first study to investigate hip-
pocampal functional imaging-derived radiomics in a PD 
cohort.

Rad-score of hippocampal functional radiomics features
In this study, we present a novel rad-score model that 
integrats radiomics data derived from hippocampal 
functional imaging to effectively differentiate between 
CI-PD patients and CP-PD patients. For 9 out of 15 

Table 2 The selected radiomics features of ALFF, DC, ReHo and 
VMHC

Feature Weight co-
efficients

ALFF derived radiomics features
1 wavelet-HHH_glszm_GrayLevelNonUniformity -0.0262
2 wavelet-HHL_firstorder_Kurtosis -0.0030
3 wavelet-HHL_glcm_Idmn -0.0053
4 wavelet-HHL_glcm_Idn -0.0185
5 wavelet-HLH_glcm_Correlation -0.0020
6 wavelet-HLH_gldm_SmallDependenceLowGray-

LevelEmphasis
-0.0507

7 wavelet-HLL_firstorder_Skewness -0.0335
8 wavelet-LLL_ngtdm_Coarseness -0.0004
DC derived radiomics features
1 wavelet-HHL_glszm_LargeAreaHighGrayLevelEm-

phasis
-0.0165

2 wavelet-HLH_firstorder_Skewness 0.0134
3 wavelet-HLH_gldm_DependenceEntropy -0.0482
4 wavelet-HLH_glszm_SmallAreaLowGrayLevelEm-

phasis
0.0148

5 wavelet-LHH_firstorder_Kurtosis 0.0297
6 wavelet-LHH_glcm_Imc1 0.0077
7 wavelet-LHH_glszm_SmallAreaLowGrayLevelEm-

phasis
-0.0523

8 wavelet-LHL_firstorder_TotalEnergy -0.0602
ReHo derived radiomics features
1 wavelet-HLH_firstorder_TotalEnergy 0.0618
2 wavelet-HLL_glszm_LargeAreaHighGrayLevelEm-

phasis
0.0361

3 wavelet-LLH_glszm_Gray Level NonUniformity -0.0109
4 wavelet-LLL_firstorder_10Percentile 0.0520
5 wavelet-LLL_firstorder_Minimum 0.0317
6 wavelet-LLL_glszm_SmallAreaLowGrayLevelEmphasis 0.0849
VMHC derived radiomics features
1 wavelet-HHH_gldm_GrayLevelVariance -0.0548
2 wavelet-HHH_glrlm_ShortRunHighGrayLevelEm-

phasis
-0.0026

3 wavelet-HLH_glcm_ClusterShade -0.0298
4 wavelet-HLH_glszm_SizeZoneNonUniformityNormal-

ized
0.0415

5 wavelet-HLL_glcm_Correlation -0.0753
6 wavelet-LHH_gldm_DependenceEntropy 0.0436
7 wavelet-LHH_glszm_SmallAreaLowGrayLevelEm-

phasis
-0.0151

8 wavelet-LHL_glszm_Gray Level NonUniformity 0.0599
9 wavelet-LLL_firstorder_TotalEnergy 0.0183
10 wavelet-LLL_glcm_Correlation -0.0015
Note: ALFF, amplitude of low-frequency fluctuations; ReHo, regional 
homogeneity; DC, degree centrality; VMHC, voxel-mirrored homotopic 
connectivity; glcm, gray-level co-occurrence matrix; glrlm, gray-level run-
length matrix; glszm, gray-level size zone matrix; ngtdm, neighborhood gray-
tone difference matrix; gldm, gray-level dependence matrix
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combinations of radiomics features derived from hippo-
campal rs-fMRI, both the training and validation cohorts 
achieved AUCs exceeding 0.90. The diagnostic ability of 
the hippocampal rad-score for identifying CI-PD was 
significantly superior to that reported in previous studies 
in which rs-fMRI-derived imaging techniques were used 
[37–39]. Notably, the combination-based rad-score was 
constructed using two functional derivatives (ReHo and 
VMHC), achieving an impressive AUC of 0.941, with all 
the metrics, including the ACC, SPE, and SEN, surpass-
ing 0.850, thereby demonstrating outstanding classifica-
tion performance.

The results of the DeLong test further substantiated 
our hypothesis that augmenting functional derivatives 
does not increase the differentiation efficiency of the 
rad-score. Combining radiomics derived from ReHo and 
VMHC appeared to be a favourable choice, as it achieved 
improved performance with fewer indices. This combina-
tion was particularly advantageous because of the greater 
heterogeneity of hippocampal changes observed in 
CI-PD patients than in CP-PD patients [8, 40, 41]. More-
over, hippocampal ReHo exhibited better complemen-
tarity in assessing alterations in homotopic connectivity. 
The changes observed in hippocampal ALFF and DC may 
align with those observed in ReHo. However, confirma-
tion of this assertion will require further research.

Machine learning model constructed with hippocampal 
functional radiomics features
Our study presented an LR model that utilized functional 
radiomics features derived from various rs-fMRI metrics, 

including ReHo, ALFF, VMHC, and DC, specifically in 
the hippocampus, to classify patients with CI-PD and 
those with CP-PD. The incorporation of these multilevel 
rs-fMRI characteristics has been shown to enhance diag-
nostic accuracy.

Additionally, we constructed an optimal LR model by 
incorporating features derived from both VMHC and 
ReHo. Notably, VMHC plays a crucial role, as cognitive 
and motor functions are known to be associated with 
brain lateralization. In complex tasks, both hemispheres 
are typically involved; however, one hemisphere usually 
dominates the function [42, 43]. PD is a classic example 
of a lateralized disease [44], and impaired interhemi-
spheric communication has been observed in previous 
studies [45–47]. Cognitive activities rely on coordina-
tion between various brain regions, particularly between 
the two hemispheres. Abnormal VMHC values in the 
bilateral hippocampus suggest disrupted information 
exchange within these regions, potentially leading to cog-
nitive impairment in patients with PD.

To address the ‘black-box’ nature of machine learn-
ing models, we employed the SHAP method to inter-
pret the models and identify feature importance. SHAP 
assigns numerical values that indicate the magnitude and 
direction of each feature’s contribution to the model’s 
predictions. The results from the SHAP analysis further 
emphasized the importance of hippocampal VMHC fea-
tures in the identification of CI-PD.

Although our LR model did not exhibit significant 
improvement in performance compared with the rad-
score, as determined by statistical analysis using the 

Fig. 2 The cut-off value obtained from receiver operating characteristic (ROC) curves of the rad-score model (A), which was constructed using two hip-
pocampal functional derivative (ReHo- and VMHC)-derived radiomics features. This cut-off value was highly sensitive in discriminating between patients 
with CI-PD and those with CP-PD in both the training cohort (B) and the validation cohort (C)
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Fig. 3 Selected hippocampal functional radiomics features were used to construct LR models with different feature combinations. * the optimal combi-
nation. Note: AUC, area under curve; Val, validation, LR, logistic regression; ALFF, amplitude of low-frequency fluctuations; ReHo, regional homogeneity; 
DC, degree centrality; VMHC, voxel-mirrored homotopic connectivity

 



Page 11 of 15Zeng et al. BMC Neuroscience           (2025) 26:27 

DeLong test, the rad-score proved to be a cost-effective 
tool for diagnosing CI-PD in clinical settings. Conse-
quently, the rad-score emerged as a straightforward, 
practical, and economical method for classifying both 
CI-PD and CP-PD.

Hippocampal functional radiomics features in relation to 
clinical characteristics
Previous studies have consistently demonstrated a strong 
inverse correlation between quality of life (measured by 
the PDQ-39) and performance on various cognitive tests, 
including the MMSE, MoCA, and Fascat [48]. These find-
ings indicate that individuals with greater cognitive ability 
tend to experience better quality of life in PD. The find-
ings of this research align with this trend, as radiomics 

features indicative of cognitive impairment in Parkinson’s 
disease patients are significantly correlated with PDQ-39 
scores. A four-year follow-up study on a PD cohort dem-
onstrated that cognitive decline was linked to depressive 
symptoms but not to anxiety [49]. However, our current 
study revealed a significant correlation between HAMA 
scores and radiomics features, which was observed only 
in the CI-PD group. This finding may be attributed to 
the enhanced capacity of radiomics analysis to uncover 
potential links between anxiety symptoms and cognitive 
impairment in PD patients. Additionally, the hippocam-
pus may play a crucial role, either directly or indirectly, in 
the manifestation of cognitive deficits and anxiety.

In addition to depression, other risk factors for cog-
nitive dysfunction in PD patients have been identified, 

Table 3 The LR model was constructed with different hippocampal radiomics features in the training and validation cohorts to 
discriminate between CI-PD patients and CP-PD patients
LR models Task AUC(95%CI) ACC SEN SPE
Modelling of hippocampal radiomics features derived from single imaging metrics
ALFF Training cohort 0.890(0.809–0.970) 0.823 0.800 0.838

Validation cohort 0.537(0.276–0.789) 0.704 0.444 0.882
DC Training cohort 0.986(0.967-1.000) 0.935 0.960 0.919

Validation cohort 0.654(0.404–0.905) 0.778 0.556 0.889
ReHo Training cohort 0.962(0.913-1.000) 0.952 0.920 0.973

Validation cohort 0.704(0.484–0.923) 0.741 0.667 0.778
VMHC Training cohort 0.984(0.960-1.000) 0.952 1.000 0.921

Validation cohort 0.824(0.672-1.000) 0.852 0.800 0.882
Modelling of hippocampal radiomics features derived from two imaging metrics
ALFF + DC Training cohort 0.985(0.955-1.000) 0.984 0.960 1.000

Validation cohort 0.809(0.602-1.000) 0.852 0.556 1.000
ALFF + ReHo Training cohort 0.971(0.934-1.000) 0.952 0.880 1.000

Validation 0.747(0.550–0.944) 0.778 0.556 0.889
ALFF + VMHC Training cohort 0.936(0.876–0.996) 0.887 0.917 0.868

Validation cohort 0.782(0.572–0.993) 0.778 0.900 0.706
DC + ReHo Training cohort 0.970(0.918-1.000) 0.968 0.960 0.973

Validation cohort 0.864(0.716-1.000) 0.852 0.889 0.833
DC + VMHC Training cohort 0.957(0.901-1.000) 0.952 0.909 0.975

Validation cohort 0.789(0.606–0.972) 0.778 0833 0.733
ReHo + VMHC* Training cohort 0.998(0.993-1.000) 0.984 1.000 0.974

Validation cohort 0.906(0.770-1.000) 0.889 0.900 0.882
Modelling of hippocampal radiomics features derived from three imaging metrics
ALFF + DC + ReHo Training cohort 0.986(0.959-1.000) 0.984 0.955 1.000

Validation cohort 0.900(0.774-1.000) 0.889 0.917 0.867
ALFF + DC + VMHC Training cohort 0.984(0.961-1.000) 0.952 1.000 0.921

Validation cohort 0.841(0.652-1.000) 0.889 0.800 0.941
ALFF + ReHo + VMHC Training cohort 0.995(0.985-1.000) 0.968 0.958 0.974

Validation cohort 0.888(0.723-1.000) 0.889 0.900 0.882
DC + ReHo + VMHC Training cohort 0.994(0.981-1.000) 0.968 0.960 0.973

Validation cohort 0.858(0.710-1.000) 0.852 0.889 0.833
Modelling of hippocampal radiomics features derived from four imaging metrics
ALFF + DC + ReHo + VMHC Training cohort 0.978(0.945-1.000) 0.968 0.913 1.000

Validation cohort 0.944(0.869-1.000) 0.852 1.000 0.733
Note: AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; LR, logistic regression; ALFF, amplitude of low-frequency fluctuations; ReHo, 
regional homogeneity; DC, degree centrality; VMHC, voxel-mirrored homotopic connectivity. * the optimal combination
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including lower scores on motor symptom tests, rigidity, 
and postural instability [1]. A previous study suggested 
that postural instability, as evaluated by the UPDRS-III 
score, may serve as a potential indicator of the risk for 
developing cognitive impairment in newly diagnosed PD 
patients [50]. Motor symptoms have been widely linked 
to cognitive deficits [51]. Similarly, the present study 
revealed a positive correlation between UPDRS-III scores 
and radiomics features in CI-PD patients, indicating that 
higher UPDRS-III scores are associated with worse cog-
nitive function.

Limitation
This study has several limitations. First, this was a single-
center cross-sectional study, and the predictive model 
was not externally validated. Therefore, future research 
should incorporate external validation to confirm the 
model’s validity. Additionally, the number of features 
remained relatively high compared with the sample size, 

which raised the possibility of overfitting. Thus, increas-
ing the sample size and reducing the data dimensionality 
are necessary. The use of multicenter data would increase 
the generalizability and stability of our results. Second, 
various subtypes of CI-PD exist, and this study did not 
consider the classification of these subtypes. Third, the 
rad-score and LR models, which were constructed using 
four functional images in this study, demonstrated a com-
parable ability to distinguish CI-PD and CP-PD patients 
compared with the response model based on structural 
MRI-GMV (see Tables S16, S18). Future studies should 
include additional functional indices to determine 
whether they can enhance classification performance.

Conclusion
The rad-score and LR models, which are based on 
radiomic features derived from hippocampal functional 
imaging, serve as valuable tools for diagnosing patients 
with cognitive impairment related to Parkinson’s disease 

Fig. 4 Relative importance of features based on SHAP for the LR classification model. Note: SHAP, Shapley’s additive explanations; LR, logistic regression. 
ALFF, amplitude of low-frequency fluctuations; ReHo, regional homogeneity; DC, degree centrality; VMHC, voxel-mirrored homotopic connectivity.
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(CI-PD). These models enhanced the diagnostic accu-
racy and efficiency of functional MRI, facilitating earlier 
and more personalized interventions, which ultimately 
improved patient outcomes.
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