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Abstract 

Background Vinpocetine (Vin) is known as a phosphodiesterase 1 inhibitor (PDE1‑I) drug with multilateral effects, 
including antioxidant and anti‑inflammatory activity. In this research, we investigated the neuroprotective and thera‑
peutic effects of Vin through hippocampal synaptic plasticity on a rat’s model of Alzheimer’s disease (AD) induced by 
an intracerebroventricular (ICV) injection of beta‑amyloid (Aβ).

Methods Sixty adult male Wistar rats were randomly divided into six groups: 1. control, 2. sham, 3. Aβ, 4. pretreat‑
ment (Vin + Aβ): Vin (4 mg/kg, gavage) for 30 days and then, inducing an AD model by an ICV injection of Aβ(1–42), 
5. treatment (Aβ + Vin): inducing an AD model and then receiving Vin for 30 days by gavage, and 7. pretreat‑
ment + treatment (Vin + Aβ + Vin): receiving Vin by gavage for 30 days before and 30 days after the induction of an 
AD model. After these procedures, via stereotaxic surgery, the stimulating electrodes were placed at the perforant 
pathway (PP) and the recording electrodes were implanted in the dentate gyrus.

Results Excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the Aβ group mean‑
ingfully diminished compared to the control group after the induction of long‑term potentiation (LTP).

Conclusions Vin could significantly prevent the Aβ effects on LTP. It can be concluded that pretreatment and treat‑
ment with Vin can be neuroprotective against harmful consequences of Aβ on hippocampal synaptic plasticity.

Keywords Alzheimer’s disease, Beta‑amyloid, Vinpocetine, Phosphodiesterase1 inhibitor, Hippocampus, Long‑term 
potentiation

*Correspondence:
Alireza Komaki
alirezakomaki@gmail.com; Komaki@umsha.ac.ir
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12868-023-00790-8&domain=pdf
http://orcid.org/0000-0003-3865-9583


Page 2 of 10Shekarian et al. BMC Neuroscience           (2023) 24:20 

Background
The most prevalent form of dementia is Alzheimer’s dis-
ease (AD) [1]. AD is a progressive neurodegenerative dis-
ease that occurs slowly and causes severe impairment in 
memory and cognitive functions, personality changes, 
abnormal behavior, and deterioration in thinking abili-
ties [2]. The brains of patients with AD are found with 
cerebrovascular pathology and this can worsen cogni-
tive functions in these patients [3]. Long-term potentia-
tion (LTP) as a physiological solidarity mutual relation of 
synaptic plasticity that is proved to underlie memory and 
learning, is affected by various second messenger systems 
and is significantly inhibited by beta-amyloid (Aβ) in AD 
[4]. AD is associated with three main structural and path-
ological characteristics in the brain: extraneuronal aggre-
gation of Aβ protein named Aβ plaques, intraneuronal 
accumulation of hyperphosphorylated tau protein named 
tau tangles (NFT), and finally, synaptic dysfunction and 
diffuse loss of neurons [5–7].

There is an increase in oxidative stress by aging and it 
is caused due to an imbalance in the redox state, lead-
ing to the production of excess reactive oxygen species 
(ROS) or the impairment of the antioxidant system [8]. 
Oxidative stress causes neurodegenerative disorders [9] 
and the brains of AD patients have a remarkable extent of 
oxidative damage due to the abnormal significant accu-
mulation of Aβ and the deposition of NFT [10]. In the 
AD brain tissue, mitochondrial dysfunction can lead to 
the release of oxidative free radicals and oxidative dam-
age. Oxidative stress markers can even be seen earlier 
than pathological changes in AD, and it seems that Aβ 
peptide is the main factor in the formation of these mark-
ers. Also, the activation of microglia by the Aβ peptide 
produces a high level of nitric oxide radicals [11, 12]. In 
addition, chronic exposure of astrocytes and microglia 
with Aβ peptides in the AD brain leads to the release of 
chemokines and some cytokines that promote inflamma-
tion and apoptosis [13–15].

Due to multifarious pathological injuries in AD, using 
a multi-agent drug is important [16]. Vinpocetine (Vin) 
is a phosphodiesterase 1 inhibitor (PDE1-I) [17–19]. Vin 
(a synthetic ethyl ester of the alkaloid apovincamine) is 
known as a PDE1-I drug with anti-inflammatory and 
antioxidant activity, which improves cerebral blood flow 
[20] and enhances memory and cognitive performance, 
which augments cyclic nucleotide signaling. It has also a 
neuroprotective effect and is effective in neurodegenera-
tive disorders, like AD [21]. The protective effects of Vin 
against ROS attacks have been shown in in vitro models 
of oxidative stress [22]. Vin has anti-inflammatory effects 
through direct inhibition of the IκB kinase complex (IKK) 
[23]. Moreover, several studies have demonstrated the 

improvement in cerebrovascular flow by Vin in patients 
with different cerebrovascular diseases [24].

Phosphodiesterases comprise a group of enzymes that 
break phosphodiester bonds and hydrolyze cyclic nucle-
otides, and consequently, play the main role in regulat-
ing intracellular levels of the second messenger, cyclic 
adenosine monophosphate (cAMP), and cyclic guanosine 
monophosphate (cGMP) [25–27]. Two main intracel-
lular pathways have a crucial role in synaptic and struc-
tural plasticity based on cAMP and cGMP activity. In 
the cAMP/PKA/CREB pathway, the cAMP-dependent 
protein kinase (PKA) or cAMP response element-binding 
protein (CREB) is activated by cAMP, which induces pro-
tein phosphorylation or gene expression, and the NO/
sGC/cGMP/cGK pathway modulates long-term changes 
in synaptic activity and participates in different forms of 
memory and learning [28–30]. Due to the effect of cAMP 
and cGMP on neuroplasticity, a phosphodiesterase inhib-
itor is a potential tool for the treatment of neurological 
diseases [31, 32].

The most important type of synaptic plasticity that 
has been studied in the brain is LTP. It is a long-lasting 
augmentation of synaptic potency, which follows certain 
types of tetanic electrical stimulation, and is commonly 
assessed in the hippocampus and accepted as a primary 
mechanism of memory [33, 34]. Regarding the effect of 
cAMP and cGMP on neuronal plasticity and the LTP 
process, PDE1 inhibitors are potential factors to improve 
neurological disorders and increase LTP [31, 32]. The 
principal aim of this study was to inquire and analyze 
whether pretreatment and treatment with Vin can pre-
vent AD-induced synaptic plasticity impairment in the 
hippocampus by evaluating the amount of LTP in the 
dentate gyrus (DG) of rats.

Methods
Animals
In this experimental study, 60 male Wistar rats from the 
Animal House of Hamadan University of Medical Sci-
ences, Hamadan, Iran (weight 230 ± 15 g) were used. The 
rats were kept in standard conditions under a 12-h cycle 
of light/dark (lights from 7:00 to 19:00  h) at 22–25  °C 
with a humidity of 50–60%. Rats were housed in Plexi-
glas cages (two rats per cage). Animals had enough water 
and food (dry pellets of rodents) and were transferred to 
the animal storage room for at least ten days before the 
study. The protocols of animal surveillance and the pro-
cedures for treatment were according to the Veterinary 
Ethics Committee of the Hamadan University of Medical 
Science following the instructions of the National Insti-
tutes of Health on the rules of in vitro animal surveillance 
(NIH Publication 80–23, 1996).
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Experimental design
After adaptation of the rats to the environment, they 
were randomly divided into the following groups (n = 10): 
Group 1: control, without any surgery (intact animals); 
Group 2: sham-operated rats that received phosphate-
buffered saline (PBS) as the solvent of Aβ (1–42) via 
intracerebroventricular (ICV) injection; Group 3: Aβ 
model (AD group) rats that received single lateral ventri-
cle injections of Aβ (1–42); Group 4: pretreatment group 
(Vin + Aβ) that received oral administration of Vin (4 mg/
kg) for 30 days before AD induction; Group 5: treatment 
group (Aβ + Vin) that received the oral administration of 
Vin (4 mg/kg) after AD induction for 30 days; and Group 
6: pretreatment + treatment group (Vin + Aβ + Vin) that 
received Vin (4 mg/kg) 30 days before and 30 days after 
AD induction (Fig. 1).

Main reagents and drugs
In order to prepare amyloid fibrils, as a neurotoxic fac-
tor, based on the instruction, 100 μg lyophilized powder 
Aβ (1– 42) (Tocris Bioscience; Bristol, UK) was dissolved 
in 100 μL of PBS as a solvent, followed by incubation at 
37 °C for seven days before use [35].

The dose of vinpocetine and duration of treatment
The dose of Vin in our study was selected based on previ-
ous research [36–38]. Thus, in this investigation, Vin was 
administrated orally (gavage) once a day at 8:00 a.m. at 
a dosage of 4 mg/kg for 30 sequential days. For the pre-
treatment + treatment group (Vin + Aβ + Vin), Vin was 
gavaged 30 days before and 30 days after Aβ induction.

Aβ injections and surgery
Animals were anesthetized using a combination of xyla-
zine (10  mg/kg) and ketamine (100  mg/kg) and then, 
placed in the stereotaxic device (Stoelting Co., Wood 
Dale, IL, USA). The stereotaxic rods were placed inside 
the animal’s ears and after observing the eyes reflex, 

the head was fixed in the device. Then, the bregma and 
lambda regions were found and according to the Paxinos 
and Watson rat brain atlas, the coordinates of the brain 
ventricular regions were adjusted and one tiny hole was 
fixed in the right ventricle. Also, 5  μl of Aβ(1–42) was 
unilaterally injected by a 5  μl microsyringe(Hamilton 
Laboratory Products, Reno, NV, USA) through its stain-
less steel cannula in the right lateral ventricle using the 
coordinates of the dorsal/ventral: 4.0 mm, medial/lateral: 
1.4  mm, and anteroposterior: -0.8  mm from bregma. 
Injections lasted 6  min and the needle of the microsy-
ringe remained in the hole for 3 min after the injection 
to make sure that the injection of Aβ(1–42) is completely 
done [39]. Instead of the Aβ(1–42), the same amount of 
PBS was injected into the rats’ cerebroventricular in the 
sham group. After injection, the scalp was sutured and 
the rats were transported to their cages. It takes two 
weeks to create an AD model [40].

Surgical procedures, electrophysiological recordings, 
and LTP induction
Initially, the rat was anesthetized by an intraperitoneal 
injection of urethane (1.5 g / kg) [41, 42]. Then, the ani-
mal was placed in the stereotaxic device, and using a 
heating pad, the animal’s body temperature was main-
tained in the natural range (37.0 ± 0.2 °C). After opening 
the skin of the skull based on the Paxinos and Watson rat 
brain atlas [43], the lateral perforant path (PP) and DG 
were determined. Based on a horizontal skull surface, 
the coordinates of PP were 4.3  mm lateral to the mid-
line, 8.1 mm posterior to the bregma, and 3.2 mm ventral 
below the skull surface, and the coordinates of DG were 
2.3 mm lateral to the midline and 3.8 mm posterior to the 
bregma. After creating holes in the skull, two concentric 
stainless-steel bipolar electrodes were placed in these 
points. Teflon-coated stimulating electrodes (except for 
the tips) 125 μm in diameter were used. The stimulating 
electrode was placed in PP and the recording electrode in 

Fig. 1 The experimental timeline. To create a rat model of Alzheimer’s disease, the rats were anesthetized with xylazine (10 mg/kg) and ketamine 
(100 mg/kg) 30 days after vinpocetine administration (Vin pretreatment, 4 mg/kg) in experimental groups and transferred to a stereotaxic 
device. The intraventricular injection of amyloid‑beta (Aβ) solution (2 μL) was done at a rate of 1 μL/2 min. Following recovery, vinpocetine was 
re‑administered through oral gavage once a day for 30 days (Vin treatment). Vin‑treated rats were divided into three groups: 1. pretreatment.2. 
treatment. 3. pretreatment + /treatment. After treatments, in vivo electrophysiological recordings were done for the determination of the excitatory 
postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the dentate gyrus of the hippocampus. LTP was induced through a 
high‑frequency stimulation of the perforant pathway. For the histological study, the animals were perfused with formol‑saline
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DG. The recording electrode was moved down into the 
DG (usually 2.7–3.2  mm ventral) until the utmost field 
excitatory postsynaptic potentials (EPSPs) were observed 
(Fig.  2). To attain the optimal ventral placement, we 
monitored the electrophysiological response that was 
extracted from the DG following single-pulse PP stimu-
lation. To minimize trauma to the brain tissue, the elec-
trodes from the cortex to the hippocampus were entered 
very slowly (0.2 mm/min). By stimulating the PP to spec-
ify the stimulus intensity to be utilized in each rat (40% 
maximum population spike (PS)), input–output current 

profiles were obtained. Through constant current isola-
tion units at a frequency of 0.1 Hz, single biphasic square 
wave pulses (0.1  ms) were delivered. Following stimula-
tion of the PP, the field potential responses were obtained 
in the granular cells of the DG.

Every 10 s, the test stimuli to the PP were applied. The 
electrodes were placed to extract the utmost field EPSPs 
(fEPSP) and PS amplitudes. LTP with high-frequency 
stimulation (HFS) protocol (0.2-ms stimulus duration, 10 
bursts of 20 stimuli, 10-s interburst interval, 400 Hz) was 
induced after making sure of a response of constant-state 

Fig. 2 Schematic drawing of a rat brain coronal section from Paxinos and Watson, showing the trace of recording electrodes (arrow) in the dentate 
gyrus (DG) (A). The cross‑section view of the hippocampal area with the tip of recording electrodes (arrowhead) in DG; sample on left and atlas 
plate on right (B). Scale bar: 1 mm
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baseline, which ordinarily takes nearly 50  min. LTP 
induction was done at a stimulus intensity that evoked 
PS amplitudes and fEPSP slopes that were almost 80% of 
the maximum response. To determine any changes in the 
synaptic responses of DG neurons, both fEPSPs and PSs 
were recorded 5, 30, and 60 min after the HFS. For each 
time point, an average of ten responses was continuously 
evoked at 10-s stimulus intervals [41, 42, 44–49].

The parameters of the stimulations were determined 
with relevant software. Then, a constant current isola-
tor unit(A365, World Precision Instruments, Inc.) was 
set via the derived data prior to transferring it to the PP. 
The DG’s field potential responses were passed through 
a preamplifier(Differential amplifier DAM 80, World Pre-
cision Instruments, Inc. Sarasota, FL, USA), and ampli-
fied 1000 times while they were filtered(bandpass, 1 Hz 
to 3 kHz). These responses were digitized at a sampling 
rate of 10  kHz, which were visible on a monitor and 
oscilloscope.

Measurement of evoked potentials
PS and fEPSP are two components of the evoked field 
potential in the DG. During the electrophysiological 
recordings, the alterations in the PS amplitude and fEPSP 
slopes were evaluated. The PS amplitude is equal to the 
head of the first positive deflection of the evoked poten-
tial to the next negative potential head. The fEPSP slope 
is equal to the slope of the line linking the start of the 
evoked potential first positive deflection to the second 
positive deflection head. The fEPSP slopes were meas-
ured between 20 and 80% of the peak amplitude (Fig. 3) 
[41, 42, 44–47, 49]. The stimulation intensity was regu-
lated to evoke potentials, which consisted of 40% of the 
maximum PS amplitude, determined by an input/output 
curve.

Data analysis
We analyzed data using repeated measure analysis of var-
iance pursued by Tukey’s test using GraphPad Prism soft-
wareversion 7.0. Values are represented as mean ± SEM. 
P-values less than 0.05 (P < 0.05) were considered 
significant.
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The LTP value was determined using the following 
equation:

LTP =
The PS value or EPSP after HFS induction

Average of the PS or EPSP at baseline
× 100%

Fig. 3 Population spike (PS) amplitude and field excitatory 
postsynaptic potential (fEPSP) slope, assessed in a representative 
sample field potential in the hippocampus of the control rats (A). 
Sample traces of evoked field potential were recorded in the dentate 
gyrus (DG) of the hippocampus before and following high‑frequency 
stimulation (HFS) of the perforant pathway (PP) in all groups (B)
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Results
After the HFS of the PP, field potential responses were 
found in granular cells in the DG (Fig. 3).

Effects of Vin pretreatment and treatment and both on 
the EPSP slopes of granular cells in the DG of AD rats
We induced LTP in the DG by HFS of the PP. The effects 
of Vin pretreatment and treatment (prior to and after Aβ 
injections) and both on the LTP of the PS amplitude and 
the EPSP slopes of the AD rats are shown in Figs. 4 and 5, 
respectively.

The EPSP slope was 134.75 ± 16.12% in the control 
rats. After HFS, there was a significant decrease (P < 0.05) 

in the EPSP slope of the AD group (105.25 ± 2.16%; 
n = 8) compared to the control and sham groups 
(119.75 ± 15.39%). There was also a significant increase 
(P < 0.05) between the treatment (138.5 ± 11.30%) and 
pretreatment + treatment groups (136.12 ± 9.67%) com-
pared to the AD group. However, no significant difference 
was found between the pretreatment (113.12 ± 4.12%) 
and AD groups (Fig. 4).

Effects of Vin pretreatment and treatment and both on 
the PS amplitude of granular cells in the DG of AD rats
The PS amplitude was 283.75 ± 18.24% in control 
rats. The range of PS amplitude of the AD group 
(113.5 ± 2.78%) decreased significantly (P < 0.05) com-
pared to the control group. Administration of Vin sig-
nificantly increased the PS amplitude in the treatment 
(408 ± 22.98%; P < 0.0001)) and pretreatment + treat-
ment (331 ± 19.45%; P < 0.01) groups compared to the 
AD group. However, there was no significant differ-
ence between the pretreatment (181 ± 13.39%) and AD 
groups. There was a significant difference (P < 0.01) 
between the treatment and pretreatment groups in terms 
of PS amplitude (Fig. 5).

Discussion
We evaluated the neuroprotective effects of Vin on the 
AD model induced by ICV Aβ injection in rats using an 
LTP assay. In the current study, ICV injection of Aβ was 
used to induce AD. Aβ inhibited LTP in the DG by reduc-
ing both the EPSP slope and PS amplitude in the AD 
group compared to the control group. In many studies, 
the LTP process was inhibited in AD models and a sig-
nificant reduction was observed in the EPSP slope and PS 
amplitude after HFS [50–53].

In the present study, we evaluated the LTP in the hip-
pocampus of AD rats. The hippocampus is considered a 
classic model to study synaptic plasticity, such as LTP and 
LTD [54]. Hippocampal LTP is a model of synaptic plas-
ticity with a direct association with memory and learning 
and is repressed after exposure to Aβ [4, 55, 56]. The hip-
pocampus is known as one of the first areas of the brain 
that is affected in the memory process and in AD [7].

Our results indicated that Vin administration in the 
pretreatment, treatment, and pretreatment + treatment 
groups improved LTP in granular cells in the DG by 
increasing the EPSP slope and the PS amplitude in com-
parison with the AD group. It has been shown that Vin 
facilitates LTP [57], increases the dynamics of dendritic 
spines [58], improves memory retrieval in passive avoid-
ance tasks in rats [59], and boosts cognitive efficiency in 
humans [19].

Increasing the levels of intracellular cGMP and cAMP 
via the phosphodiesterase 1 inhibitory effect of Vin leads 

Fig. 4 The effect of pretreatment, treatment, and 
pretreatment + treatment with Vinpocetine (Vin) on excitatory 
postsynaptic potential (EPSP) slope in the dentate gyrus (DG) 
utilizing 400 Hz tetanization of the AD‑induced rats. Long‑term 
potentiation (LTP) of the EPSP slope in DG granular cell synapses is 
meaningfully dissimilar between groups. Values are represented as 
the mean ± SEM% of the baseline. *: P < 0.05 compared to the control 
group and $: P < 0.05 compared to the AD group

Fig. 5 Effect of pretreatment, treatment, and 
pretreatment + treatment with Vinpocetine (Vin) on values of 
population spike (PS) in the dentate gyrus (DG) utilizing 400 Hz 
tetanization. Long‑term potentiation (LTP) of PS in DG granular cells in 
the hippocampus is meaningfully dissimilar between groups. Values 
are represented as the mean ± SEM% of the baseline. *: P < 0.05 
compared to the control group; $: P < 0.05, $$: P < 0.01, $$$: P < 0.001, 
and $$$$: P < 0.0001 compared to the AD group; and ^: P < 0.05 and 
^^: P < 0.01 compared to the pretreatment + treatment group
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to the phosphorylation of AMPA receptors and their 
incorporation and attachment to the synapses [60]. Long-
term phosphorylation of AMPA receptors is involved in 
the LTP of hippocampal synapses [61]. Cyclic nucleotide 
plays a significant role in cognitive function and the lev-
els of cyclic nucleotides, especially cAMP and cGMP are 
changed in AD [62, 63]. Thus, it is obvious that in the 
present study, the cyclic nucleotide restoration by Vin 
may act as an effective strategy to ameliorate cognitive 
functions and synaptic plasticity in AD.

Another explanation for the effect of Vin on LTP in 
the current study might be its antioxidant activity. Stud-
ies on AD have shown oxidative stress production and 
severe oxidative damage associated with two pathologi-
cal characteristics of AD, Aβ, and NFT destructions [64, 
65]. Vin has antioxidant activity by eliminating hydroxyl 
radicals and acts as an antioxidant by preventing the pro-
duction of ROS and lipid peroxidation in brain synapto-
somes [66, 67]. In this regard, Vin remarkably reduces 
the oxidative–nitrite stress by a decrease in malondialde-
hyde (MDA) and nitrite levels and restituting a decrease 
in glutathione (GSH) levels [21, 37]. Furthermore, Vin 
has antioxidant activity and prevents reactive free radi-
cal generation, which plays a role in a decrease in high 
glucose-induced oxidative damage [68]. Also, in another 
recent experiment, Vin improved memory and learning 
impairment after Aβ injection because of its antioxidant 
effects. Therefore, Vin is capable of changing the balance 
between oxidants and antioxidants, in favor of antioxi-
dants to cause an improvement in LTP reduction induced 
by Aβ.

Another description for the improvement of LTP by 
Vin in AD rats in the existing study might be its neuro-
protective effect. Vin possesses a neuroprotective effect 
because of its anti-inflammatory activities [69] through 
the AMPK signal pathway phosphorylation [70] and the 
nuclear factor κB (NF-κB) pathway [71, 72] to inhibit 
the expression of inflammatory genes [73]. Furthermore, 
Vin inhibits the release of TNF-α-stimulated inflamma-
tory agents by inhibiting the IκB kinase complex (IKK)/ 
NF-κB pathway [74]. Therefore, because Vin exerts an 
anti-inflammatory role and can improve cognitive prop-
erties, it can be considered as an option for the treatment 
of neurodegenerative diseases, like AD.

In the current study, we evaluated the PS amplitude and 
EPSP slope 5, 30, and 60 min after HFS to find how long 
the effect of Vin on LTP lasts. Vin treatment and pretreat-
ment + treatment, potentiated the reduction in EPSP 
slope and PS amplitude by Aβ injection 5 min after HFS. 
Therefore, Vin treatment and pretreatment/treatment 
can be efficient in the improvement of Aβ-induced dimi-
nution of LTP just for short time after HFS. In addition, 
Vin pretreatment and also its treatment could improve 

the reduction of PS amplitude by Aβ injection 30 and 
60 min after HFS. Therefore, Vin treatment can improve 
the Aβ-induced diminution of PS amplitude in all the 
time points after HFS in the current study. The increment 
of PS amplitude both 30 and 60 min after applying HFS 
might display the long-lasting enhancement of LTP by 
Vin treatment. Therefore, it seems that the Vin treatment 
might enhance the LTP for a longer time due to its effect 
on long-lasting processes, such as second messenger 
systems and protein synthesis. Changes in long-lasting 
processes, such as the production of the second mes-
sengers via the PDE1 inhibitory effect of Vin can indicate 
the longer effects of Vin on LTP. The cAMP second mes-
senger activates cAMP response element-binding protein 
(CREB) signaling through the protein kinase A (PKA) 
leading to adjusting the transcription of synaptic plas-
ticity genes, like the brain-derived neurotrophic factor 
(BDNF) protein gene [75–86]. CREB also can lead to the 
expression of several neuroprotective and anti-apoptotic 
molecules, including fibroblast growth factor (FGF) and 
transforming growth factor (TGF) as the protective neu-
rotrophic factors [87], Bcl-2 as an anti-apoptotic protein 
[88], and peroxisome proliferator-activated receptor-
gamma coactivator 1 alpha (PGC-1α) as a ROS scavenger 
[89].

In this study, we used oral administration of Vin (4 mg/
kg). In a previous study by Molnár et al., on the LTP of 
DG, Vin at 0.1 and 5 mg/kg failed to increase the ampli-
tude of PS [57]. It seems that Vin at a dose of 4 mg/kg can 
induce the potentiation of LTP reduction by Aβ. There-
fore, Vin at a dose of 4  mg/kg might show therapeutic 
effects in ameliorating the LTP reduction induced by Aβ.

Conclusion
In summary, our results suggest that Vin can improve 
the Aβ-induced impairment of neuronal plasticity. We 
also suggest that pretreatment and treatment with Vin, 
according to its neuroprotective, antioxidant, anti-
inflammatory, and multi-functional effects, can prevent 
Aβ-induced impairment in synaptic plasticity in the hip-
pocampal PP-DG pathway evidenced by the evaluation 
of LTP. Therefore, Vin has a preventive and therapeutic 
effect on AD. However, more studies are needed to assess 
the effectiveness of Vin in AD in humans.
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