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Abstract 

Hearing loss is a major health problem and psychological burden in humans. Mouse models offer a possibility to 
elucidate genes involved in the underlying developmental and pathophysiological mechanisms of hearing impair-
ment. To this end, large-scale mouse phenotyping programs include auditory phenotyping of single-gene knockout 
mouse lines. Using the auditory brainstem response (ABR) procedure, the German Mouse Clinic and similar facilities 
worldwide have produced large, uniform data sets of averaged ABR raw data of mutant and wildtype mice. In the 
course of standard ABR analysis, hearing thresholds are assessed visually by trained staff from series of signal curves of 
increasing sound pressure level. This is time-consuming and prone to be biased by the reader as well as the graphical 
display quality and scale.In an attempt to reduce workload and improve quality and reproducibility, we developed 
and compared two methods for automated hearing threshold identification from averaged ABR raw data: a super-
vised approach involving two combined neural networks trained on human-generated labels and a self-supervised 
approach, which exploits the signal power spectrum and combines random forest sound level estimation with a 
piece-wise curve fitting algorithm for threshold finding.We show that both models work well and are suitable for fast, 
reliable, and unbiased hearing threshold detection and quality control. In a high-throughput mouse phenotyping 
environment, both methods perform well as part of an automated end-to-end screening pipeline to detect candidate 
genes for hearing involvement. Code for both models as well as data used for this work are freely available.

Keywords: Automation, Auditory brainstem response, Evoked potentials, High-throughput hearing screening, 
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Introduction
Impaired hearing has a high impact on quality of life 
and age-related hearing loss is a common health burden 
in an aging society [1, 2]. Disease models of hearing loss 
using mutant mouse lines can be useful for research of 
the underlying pathophysiological and molecular mecha-
nisms. Using auditory brainstem response (ABR), a large-
scale screen of 1211 single-gene knock-out mouse lines 
has recently identified dozens of candidate genes associ-
ated with hearing threshold impairment [3]. Earlier, an 
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even larger study [4] revealed 52 novel candidate genes 
with hearing loss involvement from analysis of ABR 
data measured on 3006 mutant mouse strains within the 
International Mouse Phenotyping Consortium (IMPC) 
[5, 6] effort.

The ABR is a form of electroencephalography (EEG), 
in which electrical potentials are recorded from the 
scalp of clinical patients or laboratory animals as evoked 
responses to auditory stimulation. Response signals fol-
lowing rapidly repeated stimulus sequences are averaged 
and produce typical ABR waveforms that are charac-
terised by specific peaks and troughs, their amplitudes 
and latencies. As the ABR results from neurological and 
involuntary processing of sound signals by the differ-
ent regions of the auditory brainstem, it is an easy-to-
perform diagnostic method for hearing assessment of 
unconscious patients, infants, or animals. In large-scale 
mouse phenotyping and—more generally—in basic audi-
tory research, it is established as standardised method for 
measuring hearing function for many years  [7].

When using ABR for hearing threshold identifica-
tion, this involves a series of measurements at increas-
ing sound pressure levels (SPL) in 5 dB steps at different 
pure-tone frequencies (“tone pips”) at 6, 12, 18, 24, and 30 
kHz as well as a broadband frequency stimulus (“click”). 
For each tone pip and click stimulus, the ABR waveforms 
are displayed in a stacked diagram ordered by ascend-
ing SPL. In this audiogram, the hearing threshold (HT) 
for each frequency is then determined as the lowest SPL 
where a trained human reader can still detect a signal 
during a visual assessment of the stacked curves diagram. 
This signal has to be consistent with higher SPL signals, 
i.e. exhibiting the same, however weaker and shifted 
peaks. A plot of hearing threshold SPLs vs. stimulus fre-
quency (“hearing curve”) allows rapid overall characteri-
sation of hearing sensitivity.

It is well-established that threshold determination 
by human readers is prone to reader bias  [8] as well as 
intra- and inter-reader variability  [9, 10, 11]. This might 
depend on different visualisation tools, reader concentra-
tion, experience, training, and personal visual skills. In 
particular in high-throughput environments, maintain-
ing the same conditions over hours is difficult. Another 
challenge is to achieve and maintain low inter-reader var-
iability in teams with different readers.

Accordingly, since early on in ABR application, there 
have been attempts to automate and develop objective 
methods to determine hearing thresholds from ABR 
measurements. Over the years, ABR has been discussed 
in literature as Auditory Evoked Potentials (AEP)  [12], 
Cortical Auditory Evoked Potentials (CAEP) [13], 
Brainstem auditory evoked potential (BAEP)  [14, 15], 
Brainstem Evoked Response Audiometry (BERA)  [16], 

and Auditory Evoked Potential (EAP)  [17]. Many 
approaches applied and combined methods from dif-
ferent fields of statistics [9, 13, 17–30], often involving 
feature extraction from the time and/or the frequency 
domain. Some approaches also involved bootstrapping  
[31], comparison to templates [15, 23], or deep learning 
[12, 14, 32–34].

While most of the published methods for automated 
threshold identification use averaged response data, 
a recently published method [30] processes individual 
sweep responses with good results. Unfortunately, 
although always generated during ABR, individual 
sweep response time curves are not always easily acces-
sible. Instead, readers are usually only provided with 
the averaged curves.

Despite all these published efforts, automated 
approaches seem to have not yet replaced the visual 
threshold identification by experienced human readers 
in research practice. This is unfortunate since deter-
mining hearing thresholds in thousands of mice is not 
only laborious and subjective, as discussed above. In 
addition, long-term structured phenotyping efforts 
as performed in the German Mouse Clinic (GMC) 
[35, 36], or in the IMPC generate a huge corpus of 
ABR data. When it comes to big data analysis, ensur-
ing objective, accurate, and same-standard threshold 
reading across the whole data set is hardly feasible with 
human readers.

In this work, we present our efforts and results towards 
developing a solution for objective and automated high-
throughput identification of hearing thresholds from 
averaged ABR raw data in large-scale research envi-
ronments. It is intended to reduce human workload, 
generate accurate, objective, and reproducible results, 
re-evaluate legacy data, and establish automated quality 
control processes.

Using a data set generated at the German Mouse Clinic 
within the IMPC effort as well as an independent exter-
nal data set provided by the Wellcome Sanger Institute, 
we developed both a supervised and a self-supervised 
automated threshold detection method that work on 
the averaged data available to the researcher. Using two 
independent data sets, performance and quality of both 
methods are compared to the standard method for hear-
ing threshold finding—the subjective estimate by experts, 
using visual detection. Furthermore, we developed an 
evaluation method that allows relative comparison of 
threshold detection methods without requiring any kind 
of ground truth.

In addition, we developed and evaluated data process-
ing and visualisation methods that allow rapid identi-
fication of hearing involvement candidate genes using 
comparative manual and automated threshold finding.
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Materials and methods
Data generation
In this work, averaged ABR raw data from measure-
ments conducted in the German Mouse Clinic on mice 
from both sexes at 14 weeks of age was used. The ABR 
measurements were performed as part of a large-scale, 
primary comprehensive phenotyping effort within the 
IMPC. Accordingly, the data set comprised mutant mice, 
representing hundreds of different single-gene knock-
outs, as well as control wildtype mice. All mice were 
either on a C57BL/6NTac or C57BL/6NCrl genetic back-
ground and measured between 2013 and 2020. Mice 
were group-housed in standard individually ventilated 
cages under a 12h light/dark schedule in controlled 
environmental conditions of 22± 2 ◦ C and 50± 10% 
relative humidity and fed a normal chow diet and water 
ad libitum. Measurements were performed mainly in the 
morning.

Mice were anaesthetised with ketamine/xylazine and 
transferred onto a heating blanket in a sound-attenuating 
booth. Subcutaneous needle electrodes were inserted in 
the skin on the vertex (active) and overlying the ventral 
region of the left (reference) and right (ground) bullae. 
Stimuli were presented as free-field sounds from a loud-
speaker in front of the interaural axis. The sound delivery 
system was calibrated using a microphone (PCB Piezo-
tronics). For threshold determination, custom software 
(kindly provided by the Wellcome Sanger Institute) and 
Tucker Davis Technologies hardware were used to deliver 
click (0.01 ms duration) and tone pip (6, 12, 18, 24, and 30 
kHz of 5 ms duration, 1 ms rise/fall time) stimuli over a 
range of sound pressure levels (SPL) in 5 dB steps (Click: 
0–85 dB, 6 kHz: 20–85 dB, 12–24 kHz: 0–85 dB, 30 kHz: 
20–85 dB). Averaged responses to 256 stimuli, presented 
at 42.6/s, were analysed. For manual threshold detection, 
the lowest sound intensity giving a visually detectable 
ABR response was determined. For further reference, this 
data set is addressed as the GMC data set.

To test the methods with external data, a large, pub-
lished resource of ABR raw data from the Wellcome 
Sanger Institute  [37] measured on 9000+ mice from 
1211 single-gene mutant lines and respective control 
(wildtype) mice on largely C57BL/6N but also other 
genetic backgrounds was used. We thank the authors for 
kindly making this invaluable resource publicly available. 
This data set is addressed as the ING data set.

Data pre‑processing
All ABR data used was pre-processed to create a single 
csv file containing the ABR time series (columns t0–
t999), an individual mouse identifier, stimulus frequency, 
stimulus SPL, and a manually determined hearing 

threshold. For each mouse, there are different ABR time 
series corresponding to six different sound stimuli: 
broadband click, 6, 12, 18, 24, and 30 kHz, each of which 
was measured for a range of sound pressure levels. The 
exact range of sound levels can vary between the differ-
ent mice and stimuli, as described above. Mice not hav-
ing a complete set of data for all six stimuli were excluded 
during pre-processing of the GMC data set.

Data validation
In order to obtain the best-possible label quality in the 
supervised approach, the hearing thresholds of roughly 
one-seventh of the GMC data set were re-validated using 
a simple R/shiny app on standard tablet computers, as 
shown in Fig.  1. In the app, ABR-trained users had to 
state their agreement with the original human-assigned 
threshold for randomly presented hearing curves. Meas-
urements with an “agree” validation result were sub-
sequently weighted higher in the supervised neural 

Fig. 1 ABR threshold validation app used on standard tablet 
computers. Users are presented a randomly selected ABR 
measurement along with the original human-assigned threshold, 
visually indicated by an arrow. Users can enter their evaluation by 
swiping left: “don’t agree”, right: “agree”, down: “can’t decide”. No 
mouse or stimulus information is provided in order to allow unbiased 
evaluation
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network approach (see "Supervised artificial neural net-
work (NN)" section ) than the measurements receiving 
a “don’t agree” or “can’t decide” validation result. Using 
the app, a large number of ABR measurements could be 
re-evaluated in short time in a blinded fashion, since no 
information about the mouse, the stimulus, or the origi-
nal reader is provided whatsoever.

The hearing thresholds of the ING data set were not re-
validated, but used as provided.

Supervised artificial neural network (NN)
For modelling the human threshold finding process, 
we used a two-stage artificial neural network approach, 
which is illustrated in Fig. 2. Briefly, artificial neural net-
works consist of interconnected layers of weighted algo-
rithmic nodes that mimic neurons. The weights of each 
node are adjusted during extensive training using a data-
set of known outputs called ground truth labels. In this 
way, a trained artificial neural network represents an 
implicit algorithm that can be used for tasks that defy 
rule-based approaches, such as complex classification or 
regression tasks.

A first convolutional neural network (Model I) is 
trained as classifier to predict if an ABR response is pre-
sent or not present in a single stimulus curve (one fre-
quency, one sound pressure level). The required labels for 
Model I are derived from the original hearing thresholds 

under the assumption that all sub-threshold SPL curves 
represent non-hearing, while threshold and supra-
threshold SPL curves represent hearing. A second con-
volutional neural network (Model II) is then trained as 
classifier for every stimulus to predict the hearing thresh-
old using the respective class score outputs of Model I as 
input and the original hearing thresholds as labels. A five-
fold grouped cross-validation approach with the mice as 
groups was followed. First, mice were randomly split 4:1 
into training and test mice. This training data was then 
randomly split 4:1 into training and validation mice in 
each fold. The architecture of both models is provided 
in Additional file 1: S1- Neural network model architec-
tures. For reference, this method will be addressed as 
“NN” in this work.

Self‑supervised Sound Level Regression (SLR)
A scheme of the new threshold detection method called 
“Sound Level Regression” is shown in Fig.  3 . For refer-
ence, this method will be addressed as “SLR” in this work. 
In short, it consists of two steps, which are performed on 
each stimulus frequency and click separately: 

A Sound level estimation from single curves In this step, 
the sound level of the stimulus is estimated from the 
time series data of its evoked signal curve using a 
supervised regression method. More precisely, as the 

Fig. 2 Scheme illustrating the two-stage method. A Example ABR plot for one stimulus. Stacked curves correspond to evoked response time signal 
(1000 time steps) for increasing sound pressure levels (SPL). The arrow indicates the human-assigned hearing threshold. B For each curve of all 
sound pressure level (SPL), a trained neural network (Model I) classifier predicts if a response is present (1, blue example) or not (0, green example), 
using a 1000 time step input vector and delivering a class score as output. C Result of Model I classifier. For each SPL, the binary decision (0/1) and a 
class score is generated. D A second classifier (Model II) uses the class score outputs from Model I as input vector and predicts the hearing threshold 
(HT, red). Both models are trained on the actual hearing threshold label



Page 5 of 24Thalmeier et al. BMC Neuroscience           (2022) 23:81  

sound level is given in the data itself, it is called a self-
supervised method. The core idea is that such a pre-
diction can only work if the sound level of the stimu-
lus that leads to the evoked signal curve is above the 
hearing threshold. As otherwise, per definition, no 
information about the sound level should be con-
tained in the resulting time series.

B Hearing threshold estimation from sound level esti-
mates In this step, the hearing threshold for a given 
frequency can be determined from all respective sin-
gle hearing curves by comparison of the sound lev-
els predicted in the previous step against the known 
sound levels according to the following logic: it can 
be expected that for sub-threshold conditions, the 
predicted sound levels fluctuate around a constant 
value, while for supra-threshold conditions, the pre-
dicted sound levels follow a monotonically increasing 
function of the actual sound level (see Fig.  3D). By 
fitting a piece-wise function that is constant up to a 
certain value and then monotonically increasing, the 

break point can be used as an estimate of the hearing 
threshold.

In the following, the two steps are described in more 
detail.

Step A: Estimate sound levels for hearing curves using 
machine learning
In order to estimate the sound levels, the time series are 
first transformed into a feature space. The Fourier trans-
form (FT) is used to transform each hearing curve from 
the time domain to the frequency domain. The resulting 
power spectrum consists of a set of discrete frequency 
signals that can be considered as features. To reduce the 
dimension of this feature space, only the lowest 50 fre-
quencies of the power spectrum are used in the following 
steps. Then, a random forest regression model is trained 
to estimate the sound level for each hearing curve from 
the corresponding feature vector.

Fig. 3 Scheme illustrating self-supervised prediction of hearing thresholds from evoked ABR signals. A Stacked ABR time series for different 
given sound pressure levels (SPL) at a given stimulation frequency, e.g. 18 kHz. The arrow indicates the manual hearing threshold HTG , which 
is only used for validation in this approach. B Amplitude signal in the time domain for a single SPL. C Amplitude in the frequency domain after 
Fourier transformation (FT). The lowest 50 frequencies are extracted from the power spectrum as features. D estimated vs. measure SPL. Blue dots: 
sound pressure levels estimated by random forest regression plotted against the actual measure sound levels. Orange line: a piece-wise function 
composed of a constant (I) and a polynomial (II) part. The polynomial part of the function is fitted using an elastic net. The circle indicates where the 
constant and polynomial function meet, which determines the predicted hearing threshold HTP



Page 6 of 24Thalmeier et al. BMC Neuroscience           (2022) 23:81 

To avoid overfitting, training and prediction are 
embedded in a fivefold, mice are divided into a training 
and a test group. The random forest is trained only on 
time series from the training group and makes the pre-
diction for the test group. This way, training is strictly 
separated from the test data and prediction is still pos-
sible for each time series.

Step B: Determine hearing thresholds from sound level 
estimates
Next, the predicted sound levels are used to determine 
the hearing threshold. As described above, a piece-
wise function is fitted, consisting of a constant part and 
a monotonically increasing part, which is modeled as a 
polynomial function. In principle, the breakpoint of the 
fitted function could be used directly to determine the 
hearing threshold. However, we have lfound that this is 
not very robust, since it is possible that the polynomial 
starts as a very flat function that is still quite similar to 
a constant function. Therefore, the hearing threshold is 
determined as the sound level at which the polynomial 
part of the fitted function deviates from the constant 
part by more than 4 dB. In the remainder of this section, 
details about the fitting process are described.

Determine upper and lower bounds for threshold First, 
the search space for the hearing threshold is narrowed 
by calculating a rough estimate of its upper and lower 
bounds.

The upper bound of the threshold is determined by the 
largest sound level for which all estimated values above 
that limit show a significant positive correlation to the 
actual sound level used. This is calculated by testing the 
hypothesis for each sound level in question to see if the 
sound levels greater than that level have a positive cor-
relation with the corresponding predicted sound levels. 
The largest value for which the p-value is greater than 5 
percent after a Bonferroni correction is used.

As the lower limit for the threshold is determined by 
the first increase of a function learned by isotonic regres-
sion, which empirically was found to be a conservative 
lower limit for the hearing threshold.

Fitting a piece-wise function What remains is a range 
between these upper and lower thresholds as candidates 
for the threshold. Since measurements are taken in steps 
of 5 dB, possible candidates for the threshold are also 
limited to a grid of 5 dB.

For each possible threshold value, a piece-wise func-
tion with the breakpoint at the possible threshold 
position is fitted. The function consists of a constant 
function on the left side of the breakpoint and a pol-
ynomial of the fourth degree for sound levels larger 
than the breakpoint. An elastic net with l1 ratios of 0.5 
and 0.99 and 5-fold cross-validation with automatic 

determination of the regularisation parameter is used 
for fitting. Of the various functions used for fitting, one 
for each possible breakpoint, the one that has the least 
cross-validation error is selected.

With this procedure it can happen that the true 
threshold value is e.g. 25.1 dB and therefore a threshold 
value of 25 is estimated. However, the threshold should 
be the lowest recorded sound level at which the mouse 
exhibits stimulus-induced ABR activity, which in this 
case would be 30 dB.

Therefore, also the piece-wise function for sound lev-
els that are 0.5 dB lower and higher than the selected 
breakpoint is fitted. If either of these show a cross-
validation error that is lower than the current opti-
mum breakpoint, the new value is considered the new 
optimum and therefore the final predicted hearing 
threshold.

Evaluation curves
To avoid the use of human-derived ground truth labels in 
the quality assessment of two hearing threshold finding 
methods, evaluation curves were developed as a visual 
quality assessment method. This section describes the 
theoretical concept behind it.

Assuming that the true hearing thresholds are known, 
the sample average of all super-threshold curves and the 
sample average of all sub-threshold curves can be cal-
culated. When taking the sample average of all super-
threshold curves, a temporal pattern should emerge, 
since the mice react to the signal tone in a temporally 
coherent manner. In contrast, averaging the sub-thresh-
old ABR curves should result in a constant signal as the 
ABR curves are/have to be temporally incoherent due to 
the absence of a perceived signal and therefore any tem-
poral pattern is averaged out when taking the mean.

From this argumentation, measures to assess the qual-
ity of any threshold finding method can be derived. To 
this end, all ABR curves from all mice that correspond 
to a specific stimulus (e.g. click) are given an index 
i ∈ [0,N ] , with N being the total number of measured 
ABR curves for all mice, but restricted to this stimulus.

Now

is defined as the threshold normalized sound level. The 
ABR curves are sorted by l(i) , so that l(i) < l(i + 1) . Let 
xi(t) with t ∈ [0,T ] be the time series of the ABR curve 
with index i.

The cumulative average for the first n curves with the 
lowest threshold normalized sound levels can be com-
puted as

l(i) :=
soundlevel(i)

threshold(i)
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where xi(t) is the time series of the ABR curve with index 
i defined in the measurement interval t ∈ [0,T ] . Now let 
icrit be the largest index for curves which are still below 
the threshold value, i.e. for which l(i > icrit) ≥ 1 and 
l(i < icrit) < 1 . Then for n ≤ icrit , X̄n(t) should be an 
approximately1 constant signal with a vanishing temporal 
variance

If ground truth threshold is used for this sorting, the 
averaged curve should not deviate significantly from a 
constant signal until all sub-threshold curves have been 
added to the cumulative mean X̄n(t) . However, if sub-
optimal threshold values are used, the averaged signal 
should start to deviate from a constant signal earlier, 
because true sub-threshold curves are mixed with super-
threshold curves.

As an example, there might be a total of icrit =3000 
real sub-threshold curves in the set of all curves. Then 
S2(n) ≈ 0 for n ≤ 3000 , given the true thresholds are 
used for sorting. However, if erroneous thresholds are 
used for sorting, then S2(3000) can only be zero if the 
error of the thresholds is a systematic and constant shift 
of the thresholds. However, if the error is due to an incon-
sistency in the threshold labeling, then S2(3000) > 0 , 
since lower and upper threshold curves are mixed.

X̄n(t) :=
1

n

n
∑

i=0

xi(t),

S2(n) :=
1

T

∫ T

0

X̄n(t)
2
dt −

(

1

T

∫ T

0

X̄n(t)dt

)2

≈ 0.

Based on this, evaluation curves can be constructed 
that compare the quality of threshold value procedures: 
the (normalized) time variance of the averaged signal

is plotted versus nN  , the total percentage of ABR curves 
included in the cumulative average.

For the ground truth threshold, this curve should be 
approximately zero until nN  is equal to the number of sub-
threshold curves divided by the total number of ABR 
curves (= sub + super threshold). After that it should 
increase. For suboptimal thresholds, the curve should 
start to deviate from zero already at smaller levels of nN  . 
The more error-prone the threshold values are, the faster 
the corresponding evaluation curve deviates from zero. 
However, rating curves are not meant to be interpreted 
quantitatively, but rather are a qualitative tool to compare 
which method is better. As a visual tool, it is limited by 
resolution when two curves are close to each other. In 
this case, the difference could be negligible anyway.

Results and discussion
Pre‑processing and characterisation of working data sets
Following pre-processing and validation of raw data, 
two independent working data sets were produced as 
described in "Data generation". In short, the GMC data 
set is based on in-house data collected at the German 
Mouse Clinic, whereas the ING data set is based on a 
large published ABR data ressource. Table  1 summarises 
basic properties of the two data sets.

They comprise data of a combined total of 12,391 
mice, of which 8784 (2654 + 6130) are mutants and 
3607 (1707 + 1900) are controls. In the GMC data set, 

S2(n)

S2(N )

Table 1 Basic dataset properties.

(A) Number of mice: shown are numbers of distinct, individual mice. In the ING data set, no distinction between male and female numbers was possible, so only total 
numbers are given. (B) Gene cohort size median: the median size of cohorts of animals with the same affected distinct knockout gene are given along with the 5% and 
95% quantiles. (C) Number of genes: the number of distinct knockout genes per data set is given. Common genes provides the number of genes occurring in both 
datasets: Bach2, Cdkal1, Dbn1, Dnase1l2, Entpd1, Gsk3a, Hdac1, Klk5, Nxn, Rnf10, Slc20a2, Ubash3a

GMC dataset ING data set

Mutants Controls Total Mutants Controls Total

(A) Number of mice

Males 1331 849 2180 – – –

Females 1323 858 2181 – – –

Total 2654 1707 4361 6130 1900 8030
(B) Gene cohort size median [5%;95%]

Gene cohort size 8 [3;11] 4 [4;10]

(C) Number of genes

Distinct genes 352 1152

Common genes 12

1 The ’approximately’ is due to the finite sample size.
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male and female mice are represented equally, both in 
the mutant and the control groups. For the ING data 
set, no information about sex is given. The number of 
knockout genes represented in the GMC and ING data 
set is 352 and 1152, respectively. Twelve genes (Bach2, 
Cdkal1, Dbn1, Dnase1l2, Entpd1, Gsk3a, Hdac1, Klk5, 
Nxn, Rnf10, Slc20a2, Ubash3a) are common to both 
sets, resulting in a combined total of 1492 (352 + 1152 
− 12) knockout genes. The median size of mutant 
cohorts in the GMC data set is 8, compared to 4 in the 
ING data set.

To investigate the distribution of human-assigned 
hearing thresholds in the data sets, the according num-
bers of control (wildtype) mice have been compiled 
from raw data and visualised in Fig. 4 . While the pat-
tern of the hearing threshold labels reflects the typical 
U-shaped appearance of a hearing curve, it is obvious 
that there is a 10–15 dB shift towards lower thresholds 
in the ING data set compared to the GMC data set. 
Also, threshold variance is smaller for the ING data 
set. Notably, there is a considerable number of “non-
hearing” (999) labels in the GMC data for 24 kHz and 
30 kHz, whereas this is not the case for the ING data. 
Naturally, the distribution of hearing thresholds is not 
uniform, i.e. most mice exhibit a hearing threshold only 
in a small frequent-specific range. Evidently, for any 

supervised approach, this means that for non-normal 
thresholds, there are almost no training cases.

Overall, considerable numbers of same-standard, 
quality-controlled ABR raw data, including metadata 
and human-assigned threshold labels, have been com-
piled into two working data sets for further use.

Fig. 4 Available threshold labels for wildtype (control) animals in the GMC (left) and the ING (right) data set. Numbers in parentheses denote the 
size of the respective data set. Columns indicate the stimulus (click, 6, 12, 18, 24, 30 kHz), rows indicate the hearing threshold assigned by human 
readers. Non-hearing was arbitrarily assigned 999. Numbers in cells correspond to the distinct number of animals exhibiting the respective hearing 
threshold at the given stimulus. To facilitate visual comparison of the data sets, numbers in cells are colour-coded in shades of blue

Table 2 Experiment overview

Two different ABR threshold finding methods were tested on two different data 
sets (GMC and ING). The first two columns contain experiments with the two-
stage neural network (NN), the last two columns contain experiments with the 
sound level regression method (SLR). Sub-columns specify the data set that was 
used for training (NN) or calibration (SLR), respectively. The two rows indicate 
the data set that was used for testing of the trained NN or the calibrated SLR 
model. Cells provide the experiment number and the name of the experiment as 
used in the text. Experiments that use data from the same data set for training/
calibration and testing are highlighted in grey

Tested on NN trained on SLR calibrated on

GMC ING GMC ING

GMC Experiment 1 Experiment 3 Experiment 5 Experiment 7

“NN GMC-
GMC”

“NN ING-
GMC”

“SLR GMC-
GMC”

“SLR ING-GMC”

ING Experiment 2 Experiment 4 Experiment 6 Experiment 8

“NN GMC-
ING”

“NN ING-ING” “SLR GMC-
ING”

“SLR ING-ING”
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Evaluation and comparison of two new threshold finding 
methods
In order to comprehensively examine and compare the 
performance of the two threshold finding methods intro-
duced in this work, a scheme of eight experiments was 
conceived as shown in Table 2. First, both methods were 
evaluated in a way that the neural network based method 
and the Sound Level Regression were tested on subsets 
of mice from the same data set used for training and 
calibration, respectively. In a next step, the robustness of 
both methods was evaluated, to find out to what extent a 
method trained/calibrated on the GMC data set can be 
applied on the ING data set and vice versa.

For all experiments, data set specific labels assigned by 
human readers were used to calculate accuracy as a qual-
ity measure. To take into account that hearing thresholds 
(a) were assigned with a granularity of only 5 dB and (b) 
human threshold finding is prone to variability, accura-
cies were calculated using three match levels—“exact”: 
requiring an exact match of label and predicted/esti-
mated threshold, “ ±5 dB” and “ ±10 dB”: allowing 5 dB 
and 10 dB mismatch between label and predicted/esti-
mated threshold to still be considered accurate.

The neural network model (NN) can objectively predict 
hearing thresholds from averaged ABR raw data
With each of both data sets, the NN models were trained 
and tested with subsets of mutant and control mice from 
the same data set. This corresponds to experiment 1: 
“NN GMC-GMC” and experiment 4: “NN ING-ING” as 
introduced in Table 2.

Five-fold cross-validation showed that the method is 
robust and predictions can be generalized to the whole 
data set (not shown). Accuracies calculated for three 
match levels (see Table  3) show that requiring exact 
match is not fit for practical use. However, allowing 5 dB 

and 10 dB mismatch achieves reasonable overall accu-
racies. This is not surprising, as labels are assigned by 
human readers and human threshold variance is well-
established in literature  [9–11] and confirmed by own 
evaluation experiments with GMC data (see "Data vali-
dation" section , data not shown). In general, accuracies 
are highest for the click stimulus. For both mismatch 
levels, ING accuracies are higher. This may be due to 
the observed lower label variability in the ING data set, 
which hints on more consistent label reading.

An overall comparison of manual vs. NN predicted 
thresholds is given in Fig.  5  for both experiments. 
Interestingly, both experiments reveal a 5 dB shift 
towards lower predicted thresholds. However, since 
manual thresholds are used as labels, but do not neces-
sarily provide a ground truth for the hearing thresh-
old, the question remains whether this difference is due 
to an inaccuracy in manual thresholds or algorithmic 
prediction.

Sound Level Regression (SLR) can objectively predict hearing 
thresholds from averaged ABR raw data
With both data sets, the SLR models were calibrated and 
tested with subsets of mutant and control mice from the 
same data set. This corresponds to experiment 5: “SLR 
GMC-GMC” and experiment 8: “SLR ING-ING” as 
introduced in Table 2.

Quite similar as with the NN approach, SLR accuracies 
calculated for three match levels (see Table 4) show that 
exact match accuracies are far below practical applicabil-
ity. Again, allowing 5 dB and 10 dB mismatch achieves 
reasonable accuracies, however lower than with the NN 
approach. SLR accuracies were consistently highest for 
the click stimulus.

An overall comparison of manual vs. SLR estimated 
thresholds is given in Fig.  6  for both experiments. In 

Table 3 NN accuracies for two data sets, stimuli and match levels

Major columns “NN GMC-GMC” and “NN ING-ING” correspond to two experiments introduced in Table 2. The “exact” columns contain accuracy values when requiring 
exact match of human-assigned threshold label and NN prediction. The “±5 dB” and “±10 dB” columns contain accuracy values when allowing 5 dB and 10 dB 
tolerance, respectively. Numbers in cells denote the accuracy of the model prediction at the stimulus and match level

Stimulus NN GMC‑GMC NN ING‑ING

Accuracy [%] Accuracy [%]

Exact ±5 dB ±10 dB Exact ±5 dB ±10 dB

Click 19.5 90.3 98.5 12.6 83.9 99.3

6 kHz 28.8 70.3 87.9 22.0 77.1 94.9

12 kHz 32.8 80.1 93.9 22.2 79.5 95.9

18 kHz 28.3 78.4 93.4 15.1 75.3 96.0

24 kHz 25.0 73.9 88.0 14.1 76.9 96.6

30 kHz 21.6 60.5 77.4 16.5 73.6 95.4

Overall 26.0 75.6 89.8 17.1 77.7 96.3
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contrast to the NN approach, the ING experiment 
reveals a 5–10 dB shift towards higher estimated 
thresholds, while the estimation fits quite well in the 
GMC experiment. Also in contrast to the NN approach, 
for both mismatch levels, accuracies are higher for 
the GMC data set. As the SLR method is independent 
from human labels, this may hint towards systematic 
differences in human curve reader training or criteria 
between the data sets, which is also supported by the 
visible shift in the manual thresholds (Fig. 4).

As an overall evaluation of both methods, NN as well 
as SLR both work well and deliver good results com-
pared to human labels, provided 5 dB or even 10 dB 
mismatch are allowed. Depending on the level of reader 
training and quality control, this may be acceptable to 
many laboratories. More even so, since both methods 
have the advantage of delivering reproducible results 
and are applicable to large ABR data collections while 
avoiding reader bias.

Fig. 5 Confusion matrix of manual vs. NN predicted hearing thresholds. In both experiments, named after the scheme introduced in Table 2 , the 
two-stage neural network was trained and tested on subsets of the same data set (left: GMC, right: ING). The threshold manually assigned by human 
readers is given on the y-axis, the NN predicted thresholds are given on the x-axis. Numbers in cells are numbers of cases across all stimuli. To 
facilitate interpretation, numbers are coded by colour intensity according to the colour bar. The thin bisecting line indicates an ideal prediction

Table 4 SLR accuracies for two data sets, stimuli and match levels

Major columns “SLR GMC-GMC” and “SLR ING-ING” correspond to two experiments introduced in table 2. The “exact” columns contain accuracy values when requiring 
exact match of human-assigned threshold label and SLR estimation. The “±5 dB” and “±10 dB” columns contain accuracy values when allowing 5 dB and 10 dB 
tolerance, respectively. Numbers in cells denote the accuracy of the model estimation at the stimulus and match level

SLR GMC‑GMC SLR ING‑ING

Stimulus Accuracy [%] Accuracy [%]

Exact ±5 dB ±10 dB Exact ±5 dB ±10 dB

Click 59.5 95.4 98.7 44.0 91.2 98.3

6 kHz 24.4 58.7 79.8 14.3 48.9 74.5

12 kHz 27.7 66.4 85.9 17.5 54.1 79.6

18 kHz 30.4 69.9 89.7 18.7 58.2 83.6

24 kHz 33.5 73.3 89.3 18.7 58.5 84.2

30 kHz 35.7 69.0 84.7 19.2 58.4 83.2

Overall 35.2 72.1 88.0 22.0 61.5 83.9
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NN shows higher accuracy than SLR, however SLR is more robust
To investigate robustness of both methods, cross-over 
experiments according to the scheme laid out in Table 2  
were performed. In this experiment series, both methods 
were systematically trained/calibrated on one data set 
and applied to the other one. For NN, this corresponds to 
experiment 2: “NN GMC-ING” and experiment 3: “NN 
ING-GMC”. For SLR, the respective experiments are 
6: “SLR GMC-ING” and 7: “SLR ING-GMC”. Resulting 
accuracies are shown in a large overview Table 5  for all 
three match levels.

For all experiments, “exact match” accuracies are only 
shown for the sake of completeness and are not further 
discussed, since they are consistently far below any usa-
bility. However, for both ±5 dB and ±10 dB match level, 
a similar pattern emerges: for both data sets, NN almost 
always shows highest accuracies when trained on the 
later test data set (experiments 1 and 4). This is not the 
case for cross-over experiments 2 and 3, where accura-
cies collapse. In contrast, SLR exhibits almost consistent 
accuracies throughout all experiments, thus seems robust 
and invariant against transfer between calibration and 
test data sets. This is not surprising, since SLR methodi-
cally is not dependent on human labels at all and mar-
ginal differences between data sets may only be explained 
by differences in experimental settings or primary data 
capture which influence raw data properties.

Overall, under the condition of having a large amount 
of high quality human labels delivering a consistent hear-
ing threshold ground truth for training, NN shows to be 
a good replacement or supplementary method for human 
threshold reading. SLR could be the method of choice if 
no or not sufficient consistent human labels are available, 
since it works purely data-driven and ready calibrated 
SLR methods can be transferred between data sets.

Evaluation curves allow ground‑truth free comparison 
of threshold finding methods
Standard accuracy measurement requires gold standard 
labels delivering a ground truth. While large, specialised 
groups may be able to maintain a high level of human 
reader training and quality control consistently over 
many years, ABR threshold data generated in smaller 
groups may show more reader bias and higher variability. 
Therefore, it seems sensible to measure the quality of any 
hearing threshold determining method without requiring 
a gold standard.

Evaluation curves developed in this work are such a 
method, which has been used to compare human, NN and 
SLR threshold finding. A forth method always returns a 
constant threshold, arbitrarily set to 50 dB2, and is used as 
a control, since it can assumed to be the worst method. In 

Fig. 6 Confusion matrix of manual vs. SLR estimated hearing thresholds. In both experiments, named after the scheme introduced in Table , the 
SLR model was tested on the complete data set after being calibrated on a subset of it (left: GMC, right: ING). The threshold manually assigned by 
human readers is given on the y-axis, the SLR estimated thresholds are given on the x-axis. Numbers in cells are numbers of cases across all stimuli. 
To facilitate interpretation, numbers are coded by colour intensity according to the colour bar. The thin bisecting line indicates an ideal estimation. 
Note: compared to Fig. , numbers are much higher, since SLR methodically allows testing with the complete data set

2 Note that the curve looks the same for any constant threshold.
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Table 5 Accuracy overview

Neural Network (NN) Sound level regression (SLR)

Test Trained on Calibrated on

Data Stimulus GMC ING GMC ING

(A) Exact match Experiment 1 Experiment 3 Experiment 5 Experiment 7

GMC data Overall 26.0 % 9.7 % 35.2 % 36.0 %

Click 19.5 % 16.1 % 59.5 % 58.5 %

6 kHz 28.8 % 10.7 % 24.4 % 24.1 %

12 kHz 32.8 % 5.5 % 27.7 % 29.7 %

18 kHz 28.3 % 7.0 % 30.4 % 32.7 %

24 kHz 25.0 % 9.8 % 33.5 % 33.5 %

30 kHz 21.6 % 9.1 % 35.7 % 37.1 %

Experiment 2 Experiment 4 Experiment 6 Experiment 8

ING data Overall 17.6 % 17.1 % 25.0 % 22.0 %

Click 65.2 % 12.6 % 37.3 % 44.0 %

6 kHz 1.4 % 22.0 % 16.4 % 14.3 %

12 kHz 1.4 % 22.2 % 25.8 % 17.5 %

18 kHz 6.3 % 15.1 % 24.0 % 18.7 %

24 kHz 12.1 % 14.1 % 23.8 % 18.7 %

30 kHz 20.2 % 16.5 % 22.9 % 19.2 %

(B)±5dB match Experiment 1 Experiment 3 Experiment 5 Experiment 7

GMC data Overall 75.6 % 35.7 % 72.1 % 73 %

Click 90.3 % 58.3 % 95.4 % 95.2 %

6 kHz 70.3 % 36.0 % 58.7 % 57.6 %

12 kHz 80.1 % 28.1 % 66.4 % 69.9 %

18 kHz 78.4 % 28.1 % 69.9 % 72.7 %

24 kHz 73.9 % 32.5 % 73.3 % 72.1 %

30 kHz 60.5 % 31.0 % 69 % 70.7 %

Experiment 2 Experiment 4 Experiment 6 Experiment 8

ING data Overall 40.1 % 77.7 % 66.3 % 61.5 %

Click 98.3 % 83.9 % 89.9 % 91.2 %

6 kHz 3.0 % 77.1 % 51.7 % 48.9 %

12 kHz 3.6 % 79.5 % 63.4 % 54.1 %

18 kHz 34.2 % 75.3 % 62.8 % 58.2 %

24 kHz 47.0 % 76.9 % 65.2 % 58.5 %

30 kHz 55.4 % 73.6 % 65.1 % 58.4 %

(C) ±10 dB match Experiment 1 Experiment 3 Experiment 5 Experiment 7

GMC data Overall 89.8 % 62.3 % 88.0 % 88.2 %

Click 98.5 % 85.4 % 98.7 % 98.9 %

6 kHz 87.9 % 59.0 % 79.8 % 78.5 %

12 kHz 93.9 % 62.8 % 85.9 % 87.5 %

18 kHz 93.4 % 57.4 % 89.7 % 90.1 %

24 kHz 88.0 % 55.4 % 89.3 % 88.8 %

30 kHz 77.4 % 53.4 % 84.7 % 85.5 %
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reading always delivers the ground truth, both methods 
introduced in this work perform very well.

Both NN and SLR methods perform well in an end‑to‑end 
phenotyping pipeline
While it is interesting to know that NN and SLR work 
well for unrelated single stimuli on single mice, using 
them for routine hearing assessment in high throughput 
mouse phenotyping is a different matter. In such a sce-
nario, found thresholds are usually aggregated on two 
levels: first, thresholds for all stimuli of one individual are 
aggregated to a hearing curve, then, hearing curves are 
aggregated to display mutant vs. control threshold medi-
ans or means.

To find out whether NN and SLR are able to identify 
mouse lines with biologically relevant changes in such 
a scenario, the following approach was applied: com-
plete raw data from both data sets was subjected to NN 
and SLR threshold finding. However, for downstream 
gene-based analysis steps, data from some mice had to 
be excluded. In the GMC data set, 45 mutants without 
clearly assigned reference controls and in the ING data 
set, 48 mice without valid gene label were affected.

Visual identification of candidate genes Using result-
ing thresholds, a series of high-level visualisation have 
been generated that can be used for visual identifica-
tion of candidate genes. Figure  8  shows an example of 
an audiogram, which has been generated for every single 

Table 5 (continued)

For eight experiments, as introduced in Table , the table shows overall and stimulus-specific prediction accuracies. In short, columns determine the applied method 
(NN or SLR) and the training/calibration data set. The header columns denote the data set that was used for testing and the stimulus, respectively. Cells contain 
the accuracy values. To facilitate interpretation, the best accuracy in each row is marked in bold. Three blocks correspond to the required match level for accuracy 
calculation: (A) exact match, (B) ±5 dB, and (C) ±10 dB tolerance

(See figure on next page.)
Fig. 7 Objective comparison of threshold finding methods using evaluation curves. Four methods are compared: manual thresholds (blue, dotted 
lines), SLR estimations (red, dashed lines), NN predictions (green, dash-dotted lines), and an “always 50 dB” control method (grey, solid lines). 
Separate plots show evaluation curves for each stimulus (click, 6, 12 18, 24, 30 kHz). Plots show the normalized time variance of the averaged 
signal S2(n)/S2(N) (y-axis) vs. the total percentage of ABR curves included in the cumulative average n/N (x-axis). a shows NN predictions and 
SLR estimations from experiments 1 and 5, b shows NN predictions and SLR estimations from experiments 4 and 8, as introduced in Table . Two 
methods can be compared in a way that the curve of the better method stays longer close to zero

Neural Network (NN) Sound level regression (SLR)

Test Trained on Calibrated on

Data Stimulus GMC ING GMC ING

Experiment 2 Experiment 4 Experiment 6 Experiment 8

ING data Overall 58.9 % 96.3 % 85.9 % 83.9 %

Click 99.7 % 99.3 % 98.1 % 98.3 %

6 kHz 8.6 % 94.9 % 75.0 % 74.5 %

12 kHz 14.6 % 95.9 % 83.8 % 79.6 %

18 kHz 71.0 % 96.0 % 85.3 % 83.6 %

24 kHz 79.5 % 96.6 % 87.3 % 84.2 %

30 kHz 80.5 % 95.4 % 86.0 % 83.2 %

short, a method is better than another method, the longer 
its curve stays closer to zero.

Figure  7 shows evaluation curves for data from experi-
ments 1 and 5 (GMC) and from experiments 4 and 8 (ING). 
Evaluation curves of cross-over experiments 2, 6, 3 and 7 
are shown in Additional file 1: Table S1. All methods begin 
to deviate from zero quite early, so none of them seems to 
be perfect. However, curves show that for GMC data, both 
NN and SLR seem to work better than manual threshold 
finding, with NN overall being slightly better than SLR. In 
contrast, for ING data, the three methods (human, NN, 
SLR) differ only marginally, with SLR overall being best. 
In the context of evaluation curves, “better” means that a 
method delivers less sub-optimal thresholds than another 
method.

Using evaluation curves as an unbiased tool, it can be 
concluded that human threshold finding cannot automati-
cally assumed to be the best method. Data sets may exhibit 
different levels of variability and human bias. In this regard, 
the ING data set is more consistent than the GMC data 
set, which only underpins the need for unbiased threshold 
finding methods.

Results from evaluation curves in part contradict the 
assumptions behind the accuracy based evaluation which 
treat the human labeled thresholds as ground truth. Obvi-
ously, this is not always the case and seems to depend on 
the level of variability and human bias represented in a data 
set. When abandoning the premise that human threshold 
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Fig. 7 (See legend on previous page.)
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Fig. 8 Audiograms and hearing thresholds of a single GMC mouse. For all six stimuli, the stacked averaged response signals of an individual 
mouse are shown. The x-axis covers a time span of 10 ms in 1000 time steps. The y-axis shows stacked response signal strengths, with each curve 
corresponding to a sound pressure level. Ticks in 20 dB steps indicate where each SPL curve begins. Overlaid horizontal lines indicate hearing 
thresholds assigned by three methods: manual, by GMC reader (blue, solid line and circle); NN, GMC-trained (green, dotted line and triangle); SLR, 
GMC-calibrated (red, dashed line and star)
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mouse in the data sets. For all six stimuli, ABR responses 
as well as respective manual, NN, and SLR thresholds are 
plotted.

Next, for all GMC lines, hearing curves were generated 
that show mutant vs. control group medians, with a back-
ground indicating the [5;95] percentile range of all con-
trol animals. This is done in separate subplots for manual, 
NN, and SLR thresholds, to allow comparison of hearing 

curve differences of mutants and controls between meth-
ods. A forth subplot only shows overlaid mutant median 
hearing curves for all three methods. Figure 9  shows on 
the example of the Nacc1em1(IMPC)Hmgu mouse line, that 
all methods are able to detect the shift of the hearing 
curve in mutants. This use case shows a clear advantage 
of the algorithmic methods: there may be a system-
atic shift with regards to the manual method. However, 

Fig. 9 Group-based comparison of three threshold finding methods. On the example of the Nacc1em1(IMPC)Hmgu mouse line, the figure shows an 
end-to-end comparison of the three threshold finding methods for the use case of identifying candidate genes with hearing function involvement. 
For each method (manual: top left, NN: top right, SLR: bottom left), stimulus-specific hearing thresholds are compiled to median hearing curves of 
mutants (triangles and solid lines), same-day reference controls (squares and dashed lines) and “all controls” (circles and dotted lines) and shown as 
symbols, which are connected for the non-click stimuli. The ribbon shows the [5;95] percentile range of all controls. Numbers of mice in each group 
are shown in the legend. On the y-axis, hearing threshold is given in 20 dB ticks. The x-axis shows the stimulus. Whiskers indicate inter-quartile 
ranges. Each method-specific plot allows comparison of mutant vs. control hearing curves with thresholds based on that method. The bottom-right 
figure shows mutant-only median hearing curves and [5;95] percentile ranges of the three methods (manual: blue, solid line and circle; NN: green, 
dotted line and triangle; SLR: red, dashed line and star) to allow method comparison
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it applies to both mutants and controls, conserving any 
differences between both. Both methods can also be con-
sidered blinded, as they are not aware to which group an 
ABR response signal belongs.

Finally, for each mouse, another plot shows an overlay 
of hearing curves for the three methods in comparison. 
Figure  10 shows an example of a Nacc1em1(IMPC)Hmgu 
mouse where all three methods agree quite well.

All plots are made publicly available and can be used 
to validate and compare the methods on the original 
data.

Fully automated identification of candidate genes Vis-
ual comparison of hearing curves is indispensable for 
evaluation purposes, however not feasible for screening, 
since it is laborious and, similar to curve reading, it may 
be prone to bias. Therefore, a programmatic approach 
has been implemented that uses two measures as crite-
ria to detect mutant mouse lines that exhibit potential 
biologically meaningful changes in hearing. First, effect 
size, which descriptively spoken measures the degree of 

overlap between mutant and control group distribution 
of a stimulus-specific threshold. As no normal distribu-
tion can be assumed, Cliff ’s Delta was used, which ranges 
between −1 and 1. Second, significance, using p-values 
resulting from a Wilcoxon rank sum test, defined as the 
probability of getting a test statistics as large or larger 
assuming mutant and control distribution are the same. 
A well-established way of displaying these two meas-
ures is the so-called volcano plot. Figure 11  shows such 
volcano plots for click and 30 kHz thresholds of GMC 
lines for all three methods. Here, interesting lines—i.e. 
lines that exhibit a biologically meaningful hearing phe-
notype—are supposed to be those that show high sig-
nificance and a large effect size at the same time. Using 
p < 0.05 and |d| > 0.474 for large effects [38], candidate 
mouse lines can be found in the upper left (lower thresh-
old) and upper right (higher threshold) area of the plots 
and of course can be directly filtered to result lists.

Additional file  1: Tables S1 and S2 each show a 
method comparison of top candidate lines/genes 

Fig. 10 Mouse-based comparison of three threshold finding methods. On the example of an individual Nacc1em1(IMPC)Hmgu mutant mouse, the 
figure shows an end-to-end comparison of the three threshold finding methods. Stimulus-specific hearing thresholds are displayed as hearing 
curves gained by manual (blue, solid line and circle), NN (green, dotted line and triangle) and SLR (red, dashed line and star) threshold finding. The 
ribbons show the respective [5;95] percentile range of all mutants of the same gene in the respective colour. On the y-axis, hearing threshold is 
given in 20 dB ticks. The x-axis shows the stimulus
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for modified threshold at click and 30 kHz stimulus, 
respectively. Not surprisingly, lists are largely similar, 
although not completely. For example, all three meth-
ods identified Gpsm2 as well as Rest, two well-known 
hearing loss genes [40], while other hits differ at least 
at single frequencies. To further improve facilitated 
identification of candidate genes, a new plot displays 
calculated effect sizes for all stimuli and all three meth-
ods. Figure  12shows on two examples of this highly 
integrated plot, that it allows to rapidly evaluate ABR 
results in two ways: (a) assess effect sizes for the differ-
ent stimuli and thus judge the nature of hearing impair-
ment, (b) compare effect sizes derived from different 
methods. As can be seen for Hunk, all three methods 
end up in almost identical conventional hearing curves 

and, accordingly, effect size plots. For another gene, 
Ngdn, both plot types show that the automated meth-
ods differ from manual threshold finding in delivering 
consistently smaller effects.

An end-to-end analysis pipeline using SLR based thresh-
olds reveals 76 candidate genes with impact on hearing 
sensitivity In a re-analysis of the GMC raw data set, hear-
ing thresholds derived from both automated methods 
(SLR and NN) were used for identification of candidate 
lines as described above. For click stimulation, the visual 
and/or the fully automated method identified six genes 
(Vps13c, Rabgap1, Ttll12, Hdac1, Adprm, and Kansl1l, 
Fig. 13) with strong effects that had not been detected so 
far using manual thresholds only. For 30 kHz stimulation, 

Fig. 11 Biologically relevant changes in hearing thresholds—GMC lines, click and 30 kHz. Volcano plots show significance vs. effect size for all 
GMC lines. For each mouse line, represented by a dot, hearing thresholds were used to calculate significance (Wilcoxon rank sum test, y-axis) and 
non-parametric effect size (Cliff’s delta [39], x-axis) of mutant vs. control animals. Vertical lines indicate margins for small (0.147), medium (0.33) 
and large (0.474) effects as suggested in [38]. An effect size of 1 indicates that the difference between means of mutants and controls is equal to 
one standard deviation. The horizontal line indicates the 0.05 significance threshold level. Accordingly, dots in the upper left and upper right areas 
denote GMC lines with significant as well as relevant changes and thus are considered worthwhile candidates (see Additional file 1: Tables S1 and 
S2). Dot colours in addition represent effect size as shown in the legend. Plot rows represent click (upper) and 30 kHz (lower) stimulus data. Columns 
compare the three hearing threshold finding methods compared in this work (left: manual, middle: NN, right: SLR)
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two new candidate genes (Alkbh6 and Mgat1, Fig.  14 ) 
were identified. For a set of three other manually identi-
fied candidate genes (Ngdn, Gpatch2l, Gdi2, Fig. 15), NN 
and SLR derived thresholds did not lead to strong effects 
at click or 30 kHz.

Of course, evaluation of hearing deficits is not relying 
on differences at single frequencies. For identifying genes 
with impact on hearing sensitivity, the evaluation of sin-
gle thresholds is the basis for analysis. Additional steps 
will include the definition of relevant effect sizes and 
patterns of alteration. To further explore these potential 
hearing genes, databases for human variants, expression 
patterns, pathways etc. will have to strengthen the evi-
dence for candidate genes. In addition, confirmation of 
results with calculated sample sizes and/or separation of 
sexes is needed in some cases.

Altogether, 76 potential hearing genes have been 
detected by automated analysis starting from raw data 

using SLR (see Additional file  1: Tables S1 and S2s, 
unique entries from combined SLR columns). For four 
of them (Hoxa2, Aspa, Gpsm2, and Rest), human ortho-
logue genes have published annotations for human 
hearing loss according to  OMIM® [41]. Inner ear gene 
expression was evaluated by literature [42, 43] and eleven 
of the genes were reported to be expressed in hair cells or 
surrounding cells. For 35 of the genes, no mouse model 
was yet listed at the Mouse Genome Database (MGD) 
[44], while for 37 of them with a mouse model avail-
able no information about hearing sensitivity was pro-
vided. Solely for four of the mouse models, either altered 
hearing or middle ear morphology was reported (Rest, 
Gpsm2, Aspa, and Hoxa2). Some of the genes are already 
associated with human disease, underlining the pleiotro-
phy of gene functions and phenotypes. For example, Btbd 
9 is associated with restleg legs syndrome (RLS, OMIM 
611185), but is also expressed in outer hair cells [43[, thus 

Fig. 12 Comparison of mutant vs. control effect sizes between three hearing threshold finding methods. For two genes (Top: Hunk, Bottom: Ngdn), 
hearing thresholds determined by three different methods (manual, NN, SLR) are compared using conventional plots (panels A–C, E–G) and a new 
effect size plot (panels D, H). In the conventional plots, stimulus-specific hearing thresholds are compiled to median hearing curves of mutants 
(triangles and solid lines) and controls (squares and dashed lines), which are connected for the non-click stimuli. Whiskers indicate inter-quartile 
ranges. Numbers of mice in each group are shown in the legend. On the y-axis, hearing threshold is given in 20 dB ticks. The x-axis shows the 
stimulus. Effect size plots (D, H) show non-parametric effect size (Cliff’s delta [39], y-axis) of mutant vs. control animals for all six stimuli (x-axis). 
Colours indicate the threshold finding method (manual: blue, NN: red, SLR: orange). The grey dashdotted horizontal lines show the thresholds for 
strong effects at ±0.474. The central dotted horizontal line indicates the zero effect size level. Lines connect effect sizes of the same method. Top: 
For Hunk, effect sizes differ only marginally for all stimuli, consistent with mutant and control curves running close together in the conventional 
plots A–C. Bottom: For Ngdn, smaller effects are found with NN and SLR consistently throughout all stimuli, whereas manual thresholds show large 
effects. Again, this is consistent with the conventional plots (E–G), where mutant and control curves are clearly apart for manual thresholds (E), but 
close together for NN (F) and SLR (G). Interpretation aid: the effect size relates the difference between mutant and control medians to data variance 
(indicated by the interquartile range whiskers)
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Fig. 13 Visual identification of six new candidate genes with hearing impact at click stimulation. Plots show non-parametric effect size (Cliff’s 
delta [39], y-axis) of mutant vs. control animals for all six stimuli (x-axis). Colours indicate the threshold finding method (manual: blue, NN: red, SLR: 
orange). The grey dashdotted horizontal lines show the thresholds for strong effects at ±0.474. For convenience, lines connect effect sizes of the 
same method (Note: this is not a hearing curve, click has to be interpreted separately). For each of the six genes shown, click effect sizes of NN and 
SLR derived thresholds are above the dashdotted line, indicating strong effects, whereas manual threshold effects are below
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providing a possible link to the detected hearing altera-
tion. Further analysis will be needed for the possible can-
didate genes to uncover the nature of gene-phenotype 
association.

Conclusions
Using two independent and large data sets, this work 
shows that two new methods are robust and able to 
objectively detect hearing thresholds from averaged 
ABR raw data. While the supervised NN method, using 
two neural networks, achieves higher accuracies for 
manual ground truth, it requires training with large 
numbers of human-assigned labels and cannot be trans-
ferred between data sets. Thus, it may be preferred by 
large laboratories with high level manual thresholding 
standards. The self-supervised Sound Level Regression—
SLR—method does not depend on labels and thus can be 
directly applied to any ABR data set.

Both methods have the advantage of delivering highly 
consistent results. As they can be employed in fully-inte-
grated end-to-end pipelines, they are predestined for use 
in routine measurements, quality control, and automated 
retrospective re-analysis of large ABR data collections. 

Since SLR is invariant to the data set, it offers itself as a 
method for meta analysis of ABR data from different 
institutions.

In a mutant screening environment, both NN and 
SLR can be integrated into a fully automated end-to-
end pipeline, starting from raw averaged ABR data and 
finally producing candidate lists and plots. By adding 
SLR-based threshold calling to the ABR curve read-
ing tool of the German Mouse Clinic, a time saving of 
approx. 3 person hours/40 mice is sought. In the current 
phase, SLR calls still need human validation. However, 
a much greater advantage of automatic thresholding is 
that it allows for consistent re-analysis of large raw ABR 
data sets collected over large periods of time. What is 
hardly feasible with a manual approach is a matter of 
hours with SLR.

The decision to trust NN- and SLR-derived thresholds 
over manual derived thresholds is subjective. However, 
this work—using two independent data sets—supplies a 
solid foundation of data, results and comparative plots to 
allow external validation by experts, using visual curve 
reading. In addition, the provided methods allow com-
parative analysis of all methods using own data.

Fig. 14 Visual identification of two new candidate genes with hearing impact at 30 kHz stimulation. Plots show non-parametric effect size (Cliff’s 
delta [39], y-axis) of mutant vs. control animals for all six stimuli (x-axis). Colours indicate the threshold finding method (manual: blue, NN: red, SLR: 
orange). The grey dashdotted horizontal lines show the thresholds for strong effects at ±0.474. For convenience, lines connect effect sizes of the 
same method (Note: this is not a hearing curve, click has to be interpreted separately). For the two genes shown, 30 kHz effect sizes of NN and 
SLR derived thresholds are above the +0.474 (left: Alkbh6) and below the −0.474 (right: Mgat1) dashdotted line, indicating strong effects, whereas 
manual threshold effects don’t
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