
Zhao et al. BMC Neuroscience           (2022) 23:16  
https://doi.org/10.1186/s12868-022-00698-9

RESEARCH

Paeonol regulates NLRP3 inflammasomes 
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Abstract 

Background: Spinal cord injury (SCI) is a life-threatening traumatic disorder. Paeonol has been confirmed to be 
involved in a variety of diseases. The purpose of this study is to investigate the role of paeonol on SCI progression.

Methods: Sprague Dawley (SD) rat was used for the establishment of SCI model to explore the anti-inflammation, 
anti-oxidation, and neuroprotective effects of paeonol (60 mg/kg) on SCI in vivo. For in vitro study, mouse primary 
microglial cells (BV-2) were induced by lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment. The effect 
of paeonol on the polarization of LPS/ATP-induced BV-2 cells was determined by detection the expression inducible 
nitric oxide synthase (iNOS), tumour necrosis factor alpha (TNF-α), arginase-1 (Arg-1), and interleukin (IL)-10 using 
qRT-PCR. ELISA was used to assess the levels of IL-1β, IL-18, TNF-α, malondialdehyde (MDA), and glutathione (GSH). 
Western blotting was conducted to determine the levels of NLRP3 inflammasomes and TLR4/MyD88/NF-κB (p65) 
pathway proteins.

Results: Paeonol promoted the recovery of locomotion function and spinal cord structure, and decreased spinal 
cord water content in rats following SCI. Meanwhile, paeonol reduced the levels of apoptosis-associated speck-like 
protein (ASC), NLRP3, active caspase 1 and N-gasdermin D (N-GSDMD), repressed the contents of IL-1β, IL-18, TNF-α 
and MDA, and elevated GSH level. In vitro, paeonol exerted similarly inhibiting effects on pyroptosis and inflamma-
tion. Meanwhile, paeonol promoted BV-2 cells M2 polarization. In addition, paeonol also inactivated the expression of 
TLR4/MyD88/NF-κB (p65) pathway.

Conclusion: Paeonol may regulate NLRP3 inflammasomes and pyroptosis to alleviate SCI, pointing out the potential 
for treating SCI in clinic.
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Introduction
Spinal cord injury (SCI) is a severe and disabling trauma 
disease, which is mainly caused by traffic accidents 
and high-altitude falling [1]. Approximately 250,000 to 
500,000 individuals suffer from the pain of SCI annually 

worldwide [2, 3]. SCI generally results in neurological 
dysfunction, reduces the quality of life, or even threat-
ens patient’s life [4, 5]. Despite the increasing of treat-
ment costs each year, there is still no effective therapy to 
enhance neurological recovery after SCI [6]. Therefore, 
exploring an effective clinical-drug is urgent to alleviate 
SCI.

Neuroinflammation is widely known as an immune 
response in the central nervous system (CNS), which 
plays an important role in the functional recovery of 
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nervous tissues after SCI [7, 8]. Increasing attention has 
been paid to the functions of inflammasomes, especially 
NLRP3 inflammasomes, a kind of subcellular multipro-
tein complexes [9]. In general, NLRP3 inflammasomes 
are highly expressed in CNS to detect the invading agents 
[10]. However, the activation of NLRP3 inflammasomes 
further activated the expression of caspase 1, apoptosis-
associated speck-like protein (ASC) and N-gasdermin D 
(N-GSDMD), which is accompanied by the production 
of interleukin (IL)-18 and IL-1β [11–13]. In addition, 
numerous studies have uncovered that the formation 
of inflammasomes is strongly correlated with pyropto-
sis, eventually contributing to the secretion of inflam-
matory cytokines [14–18]. In the process of pyroptosis, 
caspase-1 may interact with ASC to form inflammas-
omes, while inflammasomes further actives caspase-1 
to form active caspase 1. The active caspase 1 further 
promotes the activation of GSDMD to form N-GSDMD 
and C-GSDMD, while N-GSDMD eventually results in 
pyroptosis [16]. Meanwhile, a large number of IL-18 and 
IL-β was released from the impaired microglial cells [17, 
18]. Hence, controlling the activation of NLRP3 inflam-
masomes and inhibiting pyroptosis of microglial cells 
may be helpful to attenuate SCI.

Paeonol (2’-hydroxy-4’-methoxyacetophenone) is 
the main active component in the extract of peony root 
[19]. Report on the clinical application of paeonol can 
be traced back to 1985 [20]. With the development of 
medical technology, growing clinical applications of pae-
onol have been uncovered, such as the inhibitory role in 
inflammation [21, 22], cardiovascular diseases [23, 24], 
tumor [25, 26], and oxidative stress [27, 28]. For instance, 
Zhai et  al. have indicated that paeonol can attenuate 
rheumatoid arthritis through mediating NF-κB signal-
ing pathway [21]. Paeonol inactivates TLR4 signaling 
pathway to repress the apoptosis of lipopolysaccharide 
(LPS)-treated endothelial cells [23], and inhibits NF-κB 
signaling pathway to accelerate the apoptosis of gastric 
cancer cells [25].Additionally, paeonol can relieve the 
hepatotoxicity via increasing glutathione (GSH) level and 
decreasing malondialdehyde (MDA) content [27]. Nota-
bly, the neuroprotective roles of paeonol on numerous 
central nervous system disorders are also determined, 
including Alzheimer’s disease [29], cerebral ischemic 
injury [30, 31], Parkinson’s disease [32], and diabetic 
encephalopathy [33]. SCI, as a well-known neurological 
dysfunction disorder accompanied by the occurrence 
of inflammation and oxidative stress [34, 35], there are 
still no relevant researches concentrated on the func-
tion of paeonol in SCI progression. More importantly, 
a recent study has reported that paeonol may attenuate 
NLRP3 mediated inflammation in a hyperlipidemia rat 
model [36]. However, the action mechanism of paeonol 

on NLRP3 inflammasomes, and the interactions between 
paeonol and pyroptosis in SCI are still unclear.

In this study, the regulatory mechanisms of paeonol, 
and the interactions among paeonol, NLRP3 inflammas-
omes, and pyroptosis in SCI (in vitro and in  vivo mod-
els) were preliminarily investigated. Our findings indicate 
that paeonol may serve as a potential therapeutic agent 
for treating SCI.

Results
Paeonol attenuates SCI in a rat model
To explore the therapeutic efficacy of paeonol, we first 
established a rat SCI model. As presented in Fig.  1A, 
we found that the BBB scores of rats in the SCI group 
(P < 0.001) or SCI + CMC-Na group (P < 0.001) were 
significantly decreased compared to those in the sham 
group, whereas paeonol treatment had a remarkable 
improvement on rat SCI (P < 0.001). Unsurprisingly, the 
content of spinal cord water in the SCI group was rela-
tively higher than that of sham rat (Fig.  1B, P < 0.001). 
Spinal cord water content in the SCI + pae group was 
significantly reduced compared to that in the SCI group 
(P < 0.05). Next, H&E staining was performed to fur-
ther validate the protective effect of paeonol on SCI. As 
illustrated in Fig. 1C, we discovered that the structure of 
spinal cord in the sham group was normal, while the spi-
nal cord structures of the SCI group and SCI + CMC-Na 
group got damaged with the formation of some cavities. 
At the same time, the architecture of the spinal cord was 
better preserved in the SCI + paeonol group.

Paeonol represses the pyroptosis and formation of NLRP3 
inflammasome in SCI rat model
The mRNA levels of caspase 1 and NLRP3 at different 
time points after SCI were initially determined. Cas-
pase1 mRNA level in spinal cord tissues of SCI rat was 
elevated at day 1, peaked at day 3 and persisted at a rel-
atively high level at day 7 (Fig. 2A, P < 0.001). Although 
the mRNA level of NLRP3 at day 7 was relatively lower 
than that at day 1 or day 3, NLRP3 mRNA concentration 
in SCI rats at the three time points were all significantly 
increased compared to the sham rats (P < 0.001). Mean-
while, the protein levels of ASC, NLRP3, active caspase 
1, and N-GSDMD in spinal cord tissues of rat were meas-
ured by western blot assay. The results demonstrated that 
SCI significantly increased these protein levels (Fig. 2B–
F, P  < 0.001), whereas these promoting effects caused 
by SCI were reversed by paeonol treatment (P < 0.001). 
Additionally, based on the results of TUNEL staining 
assay, SCI group showed increased number of TUNEL-
positive neuron, while paeonol administration revised 
this situation (Fig. 2G, P  < 0.001).
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Paeonol alleviates the neuroinflammation and oxidative 
stress in SCI rat model
The possible role of paeonol on neuroinflammation and 
oxidative stress of rat after SCI was further assessed. As 
shown in Fig.  3A–C, paeonol treatment reversed the 
increased levels of IL-1β, IL-18, and TNF-α induced 
by SCI (P < 0.01). Additionally, we found a high level of 
MDA and a low level of GSH in rat spinal cord tissues 
following SCI (Fig. 3D–E, P  < 0.001), while these situa-
tions were partly reversed in rats injection of paeonol 
(P < 0.05).

Effects of paeonol on microglia and astrocyte
To determine the number of activated microglia, CD68 
expression was estimated by immunofluorescence label-
ling. SCI induced a significant increase in the number of 
activated microglia, as demonstrated by an elevation in 
CD68-positive cells (Fig. 4A, P  < 0.001). Such an altera-
tion was remarkably reversed by paeonol administration 
(P < 0.001). To analyze the reactive astrogliosis that medi-
ated the formation of glial scar, GFAP immunoreactiv-
ity was estimated by IHC analysis. As shown in Fig. 4B, 
GFAP immunoreactivity was robustly elevated after SCI; 
these changes were markedly normalized by paeonol 
treatment.

Paeonol promotes BV‑2 cells M2 polarization
To explore the function of paeonol on microglia polari-
zation, the mRNA levels of M1 polarization markers 
(iNOS and TNF-α) and M2 polarization markers (Arg-1 
and IL-10) were studied. The mRNA levels of iNOS 
and TNF-α were remarkably increased in the LPS/ATP 
group (Fig. 5A, B, P  < 0.001), and decreased in the LPS/
ATP + paeonol group (P < 0.001). However, the levels of 
Arg-1 and IL-10 showed the opposite pattern (Fig. 5C, D, 
P  < 0.01).

Paeonol suppresses the pyroptosis and inflammatory 
responses in BV‑2 cells
In order to understand the effects of paeonol on pyropto-
sis and inflammation in BV-2 cells, in vitro experiments 
were performed. The mRNA levels of caspase 1 and 
NLRP3 in BV-2 cells were remarkably increased in the 
LPS/ATP group compared to the control group (Fig. 6A, 
P  < 0.001). As presented in Fig.  6B–F, addition of pae-
onol reversed the promoting effects of LPS and ATP co-
treatment on the protein levels of ASC, NLRP3, active 
caspase 1, and N-GSDMD (P < 0.001). Similarly, the 
results of ELISA uncovered that the levels of IL-1β, IL-18, 
and TNF-α were also elevated in the LPS/ATP group 
(Fig. 6G–I, P  < 0.001), while these patterns were reversed 
in the LPS/ATP + paeonol group (P < 0.01).

Fig. 1 Paeonol attenuates SCI in a rat model. A The BBB scores at 1, 3, 7, 14, and 21 days after SCI. ***P < 0.001 vs. the sham group. ###P < 0.001 
vs. the SCI + CMC-Na group. B The spinal cord water content of the sham, SCI, SCI + CMC-Na, and SCI + pae groups. ***P < 0.001 vs. the sham 
group. #P < 0.05 vs. the SCI + CMC-Na group. C The statuses of rat spinal cord tissues at 7 days post SCI were determined by H&E staining assay. 
Magnification × 200
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Paeonol inactivates the TLR4/MyD88/NF‑κB (p65) 
signalling pathway in BV‑2 cells
Because the TLR4/MyD88/NF-κB (p65) signalling path-
way is a primary pathway involved in neuroinflammation 
[37, 38], the protein levels of TLR4, MyD88, and p-p65/
p65 were determined for further validation the role of 
paeonol in LPS/ATP-induced BV-2 cells. As illustrated 
in Fig. 7A–D, we found that the levels of TLR4, MyD88, 
and p-p65/p65 were increased in the LPS/ATP group 
(P < 0.001), whereas these situations were reversed in the 
LPS/ATP + paeonol group (P < 0.01).

Discussion
Inflammatory response is an important factor of sec-
ondary injury in SCI [39, 40]. The adoption of various 
measures to prevent or suppress inflammation has 
become a means of SCI treatment. In this study, we 
explore the protective effect of paeonol on the damages 
to spinal cord structure, and indicate that it may relieve 
the acute phase of the inflammatory response via inhib-
iting NLRP3 inflammasomes formation, microglia 
pyroptosis, and TLR4/MyD88/NF-κB (p65) pathway.

Fig. 2 Paeonol represses the pyroptosis and formation of NLRP3 inflammasome in SCI rat model. A The mRNA expression of caspase1 and NLRP3 at 
1, 3, and 7 days after SCI. ***P < 0.01 vs. the sham group. (B) The western blot assay images (20 μg/lane) for the levels of ASC, NLRP3, active caspase 
1, and N-GSDMD in spinal cord tissues. (C) The protein level of ASC in spinal cord tissues was measured by western blot assay. (D) The protein level 
of NLRP3 in spinal cord tissues was measured by western blot assay. (E) The protein level of active caspase 1 in spinal cord tissues was measured by 
western blot assay. (F) The protein level of N-GSDMD in spinal cord tissues was measured by western blot assay. (G) The number of TUNEL-positive 
neuron was measured by TUNEL staining assay. ***P < 0.001 vs. the sham group. ###P < 0.001 vs. the SCI + CMC-Na group



Page 5 of 12Zhao et al. BMC Neuroscience           (2022) 23:16  

Fig. 3 Paeonol alleviates the neuroinflammation and oxidative stress in SCI rat model. A The level of IL-1β in spinal cord tissues was measured by 
ELISA. B The level of IL-18 in spinal cord tissues was measured by ELISA. C The level of TNF-α in spinal cord tissues was measured by ELISA. D The 
level of MDA in spinal cord tissues was measured by a corresponding commercial assay kit. E The level of GSH in spinal cord tissues was measured 
by a corresponding commercial assay kit. ***P < 0.001 vs. the sham group. #P < 0.05, ##P < 0.01, ###P < 0.001 vs. the SCI + CMC-Na group

Fig. 4 Effects of paeonol on microglia and astrocyte. A Immunofluorescence labeling to estimate the number of CD68-positive cells. B IHC analysis 
to assess GFAP immunoreactivity. ***P < 0.001 vs. the sham group. ###P < 0.001 vs. the SCI + CMC-Na group
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Emerging researches have revealed the neuroprotective 
effect of paeonol on central nervous system diseases [41, 
42]. It is well known that SCI is characterized by the dis-
ordered spinal cord structure and cavity formation [43]. 
In addition, SCI rats generally show impaired locomotion 
function and increased spinal cord water content [43, 44]. 
In this study, we discovered that paeonol could effectively 
reduce spinal cord water content and relieve the damages 
to spinal cord structure in rats following SCI, suggest-
ing that paeonol may be an underlying agent to attenuate 
SCI.

NLRP3 inflammasome is considered as an important 
factor in the progression of SCI [43, 45]. A previous 
study has revealed that celastrol can protect rat against 
the SCI through inactivation of NLRP3 inflammasomes 
[43]. Jiang et  al. used the pharmacologic inhibitor BAY 
11-7082 or A438079 to specifically repress the activa-
tion of NLRP3 inflammasomes and found that inhibi-
tion of NLRP3 inflammasomes reduces neuronal death, 

attenuates spinal cord anatomic damage, decreases the 
levels of inflammatory cytokines, and promotes motor 
recovery [45]. These researches implied that NLRP3 
inflammasomes are a vital contributor to the secondary 
damage of SCI. Similarly, paeonol interacts with NLRP3 
inflammasomes in a hyperlipidemic rat model has 
revealed that paeonol can reduce the levels of NLRP3, 
active caspase 1, and ASC to alleviate rat hyperlipidemia 
[36]. In the current study, we found that paeonol treat-
ment significantly repressed the levels of NLRP3 inflam-
masomes-related proteins both in vitro and in vivo. Our 
data suggested that the interventions of paeonol on SCI 
may achieve by regulation of NLRP3 inflammasomes.

Pyroptosis is involved in another crucial cellular pro-
cess and has synergistic effect with NLRP3 inflammas-
omes in the development of SCI [43, 46]. The activated 
NLRP3 inflammasomes can further induce the cleav-
age of GSDMD, eventually triggering pyroptosis [46]. 
Therefore, targeting pyroptosis and inflammasome 

Fig. 5 Paeonol promotes BV-2 cells M2 polarization. A The expression level of iNOS in BV-2 cells was detected by qRT-PCR. B The expression level of 
TNF-α in BV-2 cells was detected by qRT-PCR. C The expression level of Arg-1 in BV-2 cells was detected by qRT-PCR. D The expression level of IL-10 
in BV-2 cells was detected by qRT-PCR. **P < 0.01, ***P < 0.001 vs. the control group. ##P < 0.01, ###P < 0.001 vs. the LPS/ATP group
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components can be novel therapeutic strategies for SCI 
[47]. In this study, we demonstrated that the levels of 
pyroptosis-related proteins were decreased by paeonol 
treatment in rats following SCI and in LPS/ATP-induced 
microglia, which implied that the participation of pyrop-
tosis in SCI progression can be regulated by paeonol. 
These results are further confirmed by TUNEL assay. 
Furthermore, the activation of NLRP3 inflammasomes 
and pyroptosis is accompanied with the release of inflam-
matory cytokines [36, 43, 47]. In line with the previous 
studies, we found that paeonol decreased the high lev-
els of IL-1β, IL-18, and TNF-α caused by SCI. Taken 
together, we drew a conclusion that paeonol may inhibit 
the activation of NLRP3 inflammasomes and pyroptosis 
to alleviate SCI in a rat model.

Microglial cells is commonly used as an in vitro model 
of CNS injury [48]. After undergoing SCI, microglial cells 

may be activated to secrete inflammatory cytokines and 
undergo changes in morphology [49]. It has been con-
firmed that M1 polarization of microglia is strongly cor-
related with the enhancement of inflammation and the 
damage to neuron structures, whereas M2 polarization is 
helpful for the repair of neurons [43]. We then detected 
the role of paeonol on M2 polarization of microglia, and 
discovered that paeonol promoted M2 polarization and 
inhibited M1 polarization of BV-2 cells. At the same time, 
we also found that the inflammation were suppressed 
after paeonol treatment. Our results lend credence to 
the previous studies [43, 50], suggesting that paeonol 
may promote the M2 polarization of microglial cells, 
thereby repressing the release of inflammatory cytokines 
and contributing to relieve SCI. Additionally, it is well 
known that microglia and astrocyte are most affected 
by the reduction of inflammatory response [45]. All the 

Fig. 6 Paeonol suppresses the pyroptosis and inflammatory responses in BV-2 cells. A The mRNA expression of caspase1 and NLRP3 in BV-2 cells 
was detected by qRT-PCR. ***P < 0.001 vs. the control group. B The western blot assay images (20 μg/lane) for the levels of ASC, NLRP3, active 
caspase 1, and N-GSDMD in BV-2 cells. C The protein level of ASC in BV-2 cells was measured by western blot assay. D The protein level of NLRP3 
in BV-2 cells was measured by western blot assay. E The protein level of active caspase 1 in BV-2 cells was measured by western blot assay. F The 
protein level of N-GSDMD in BV-2 cells was measured by western blot assay. G The level of IL-1β i in BV-2 cells was measured by ELISA. H The level 
of IL-18 in BV-2 cells was measured by ELISA. I The level of TNF-α in BV-2 cells was measured by ELISA. ***P < 0.001 vs. the control group. ##P < 0.01, 
###P < 0.001 vs. the LPS/ATP group



Page 8 of 12Zhao et al. BMC Neuroscience           (2022) 23:16 

results suggested that paeonol may suppress the activa-
tion of BV-2 cells, promote M2 polarization, and repress 
the pyroptosis and formation of NLRP3 inflammasomes 
in vitro.

TLR4/MyD88/NF-κB (p65) signalling pathway is a pri-
mary pathway involved in inflammation of microglial 
cells, and the activation of this pathway is closely corre-
lated with the expansion of inflammatory reactions [37, 
38]. More importantly, the activation of TLR4/MyD88/
NF-κB pathway and the up-regulation of the expres-
sion of related inflammatory factors are confirmed to 
aggravate SCI [51] Therefore, we studied the progres-
sion of TLR4/MyD88/NF-κB pathway in SCI, and found 
that paeonol reversed the promoting effects of LPS/ATP 
treatment on the protein levels of TLR4, MyD88, and 
p-p65/p65 in BV-2 cells. Similar to our findings, a study 
focused on the effect of paeonol on acute lung injury 
(ALI) has demonstrated that paeonol ameliorates LPS-
induced ALI via inhibition of the TLR4/MyD88/NF-κB 
signalling pathway [52]. Therefore, we believed that pae-
onol may inactivate the TLR4/MyD88/NF-κB signalling 

pathway, thereby restraining the development of inflam-
mation after SCI.

There are also some limitations of this study. First, we 
selected time points and concentrations based on previ-
ous literature. The therapeutic effects of paeonol on other 
time points remain to be explored, and it remains to be 
determined whether the treatment has dose dependence. 
Second, there are also several factors such as vascular 
injury, membrane/ionic dysregulation, and neurotrans-
mitter toxicity involved in SCI progression, but this study 
focused on the effects of paeonol on NLRP3 inflammas-
omes and pyroptosis. We will elucidate these issues in 
future studies.

Conclusion
In summary, our findings to some extent indicated that 
in the progression of SCI, paeonol may inhibit NLRP3 
inflammasomes and pyroptosis through promoting M2 
polarization of BV-2 cells via the TLR4/MyD88/NF-κB 
signalling pathway.

Fig. 7 Paeonol makes inactivation for the TLR4/MyD88/NF-κB (p65) signalling pathway in BV-2 cells. A The western blot assay images (20 μg/
lane) for the levels of TLR4, MyD88, p65, and p-p65 in BV-2 cells. B The protein level of TLR4 in BV-2 cells was measured by western blot assay. C The 
protein level of MyD88 in BV-2 cells was measured by western blot assay. D The protein level of p-p65/p65 in BV-2 cells was measured by western 
blot assay. ***P < 0.001 vs. the control group. ##P < 0.01, ###P < 0.001 vs. the LPS/ATP group
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Methods
SCI rat model
Forty-eight female Sprague Dawley (SD) wild-type 
rats (8  weeks, 200–250  g; EseBio, Shanghai, China) 
were assigned randomly into four groups: the sham, 
SCI, SCI + carboxymethyl cellulose (CMC)-Na, and 
SCI + paeonol groups (n = 12). SCI rat model was estab-
lished in accordance with the previous study [53]. Briefly, 
the rats were anaesthetized by intraperitoneal injection 
of pentobarbital sodium (50 mg/kg). The T9 lamina was 
removed after spinal exposure, followed by squeezing 
the spinal cord for 1 min using vascular clip (30 g forces). 
For the rats in the sham group, same surgical procedures 
were underwent except for damage to the spinal cord. 
Manual urinary (twice/day) was needed until the return 
of bladder function. Paeonol was dissolved in 0.5% CMC-
Na. Subsequently, the rats in the SCI + CMC-Na and 
SCI + paeonol groups were intraperitoneally injected 
with 0.5% CMC-Na and paeonol (60 mg/kg) respectively 
until the rats were sacrificed. This study is reported in 
accordance with Animal Research: Reporting of In Vivo 
Experiments (ARRIVE) guidelines. All animal experi-
ments in this study were in strict accordance with the 
protocols stated in the Guide for the Care and Use of 
Laboratory Animals and approval by ethical committee 
of Central Hospital Affiliated to Shandong First Medical 
University.

Locomotion recovery assessment
Basso Beattie Bresnahan (BBB) scores [54] were used 
to assess the locomotion function of rat after SCI at the 
time point of 1, 3, 7, 14, and 21 days. The range of BBB 
scores was from 0 to 21 points. In brief, 0 points repre-
sents complete paralysis, while 21 points was on behalf 
of normal locomotion function. Three trained examiners 
who were blinded to the experimental conditions inde-
pendently performed the tests to obtain the scores.

Hematoxylin–eosin (H&E) staining assay
Seven days after SCI model establishment, the rats (n = 5) 
in the aforementioned four groups were euthanized by 
overdose of pentobarbital sodium (200 mg/kg). The spi-
nal cord tissues (1  cm on each side of the lesion) were 
fixed in 4% paraformaldehyde for one day, followed by 
embedding in paraffin sectioned at 5 μm thickness. The 
sections were stained with H&E staining immediately 
and then were observed by a light microscopy (BX53, 
Olympus, Japan; magnification × 400).

Immunohistochemistry (IHC) analysis
IHC staining was conducted using streptavidin–biotin-
peroxidase complex method. Briefly, spinal cord samples 

were fixed, paraffin-embedded, dewaxed, rehydrated, and 
antigen retrieval. Then samples were stained with pri-
mary antibody anti-glial fibrillary acidic protein (GFAP) 
(1: 1,500; Abcam, Cambridge, MA, USA) at 4˚C over-
night, followed by incubation with the secondary anti-
body (1:3000; Abcam) for 30 min at 37 °C. Pictures were 
taken under a light microscope (magnification × 400).

Immunofluorescence labeling assay
After antigen retrieval, the samples were incubated over-
night with primary antibody anti-Iba1 (1:500, Abcam) 
and then incubated with secondary antibody. Images 
were obtained with the fluorescence microscope (Olym-
pus, Tokyo, Japan; magnification × 400). Cell counts and 
analysis were through ImageJ software (1.4, NIH).

Terminal deoxynucleotidyl transferase (TdT) dUTP 
Nick‑End Labeling (TUNEL) assay
TUNEL staining was performed using an In  Situ Cell 
Death Detection kit (Roche, Basel, Switzerland) accord-
ing to the manufacturer’s instructions. Briefly, after 
deparaffinization, slides were incubated with proteinase 
K, then TUNEL reaction mixture, followed by block-
ing buffer with peroxidase-streptavidin conjugate solu-
tion, and finally 0.03% diaminobenzidine. Subsequently, 
nuclear staining was performed with DAPI. Images were 
examined by a fluorescence microscope.

Assessment for spinal cord water content
The fresh spinal cord tissues (2  mm) were initially 
weighted as wet weight. Afterwards, spinal cord tissues 
were dried at 60 °C for 72 h and the dry weight was then 
determined. The water content of spinal cord tissues was 
calculated as follows: [(wet weight—dry weight)/wet 
weight] × 100.

Cell culture, grouping, and treatments
Mouse primary microglial cells (BV-2 cells) were pro-
cured from Cobioer biotech (Nanjing, China) and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) 
with 10% fetal bovine serum and 1% streptomycin/peni-
cillin at 37  °C with 5%  CO2. The cells were divided into 
three groups: the control, LPS/ATP, and LPS/ATP + pae-
onol (pae) groups. To induce NLRP3 inflammasomes, 
100 ng/ml LPS was added for 24 h, and then 1 mM ATP 
was added for 3  h, while the cells in the control group 
were without any treatment. For the LPS/ATP + pae 
group, paeonol (15 μM) was prior to treat BV-2 cells for 
1 h.

Quantitative reverse‑transcription PCR (qRT‑PCR)
Total RNA was extracted from rat spinal cord tissues 
and BV-2 cells by Total RNA Extraction Kit (Promega, 
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Madison, WI, USA), followed by synthesizing to cDNA 
using First-Strand cDNA Synthesis Kit (Thermo Fisher 
Scientific, Waltham, MA, USA) and performing qRT-
PCR with SYBR Green FAST Mastermix (Qiagen, Dus-
seldorf, Germany). The expression levels were quantified 
by a  2−ΔΔCt method. The expression of caspase 1 and 
NLRP3 was normalized to GAPDH, and the expression 
of iNOS, TNF-α, Arg-1, and IL-10 was normalized to 
β-actin.

Detection of inflammatory cytokines and oxidative stress 
factors
Seven days after paeonol administration, inflammatory 
cytokines and oxidative stress factors were measured as 
previously described [45, 55]. In brief, spinal cord sam-
ples or BV-2 cells were homogenized in phosphate-buff-
ered saline (PBS), subsequently centrifuged at 10,000×g 
at 4  °C for 10  min. The levels of TNF-α, IL-1β, IL-18, 
MDA, and GSH in the supernatant were measured using 
specific ELISA kits (Esebio, Shanghai, China) according 
to the manufacturer’s protocol.

Western blotting analysis
RIPA buffer containing protease inhibitors was used to 
extract proteins from rat spinal cord tissues and BV-2 
cells. Protein concentrations were then determined 
using a BCA Protein Assay Kit (Abcam). Protein sam-
ples (20  μg/lane) were separated via 10% SDS-PAGE 
and the resolved proteins were transferred onto PVDF 
membranes. Membranes were blocked with 5% bovine 
serum albumin at room temperature. After blocking, 
membranes were incubated overnight at 4  °C with pri-
mary antibodies against TLR4 (1:1000; Abcam), MyD88 
(1:1000; Abcam), p65 (NF-κB) (1:1000; Abcam), p-p65 
(phospho-NF-κB) (1:1000; Cell Signaling), NLRP3 
(1:1000; Abcam), ASC (1:1000; Affinity Biosciences), 
caspase 1 (1:1000; Affinity Biosciences), N-GSDMD 
(1:1000; Abcam), and GAPDH (1:1000; Abcam). There-
after, they were washed three times with Tris-buffered 
saline Tween-20. Subsequently, an HRP-conjugated IgG 
secondary antibody (1:5000; Santa Cruz, Waltham, MA, 
USA) was added and membranes were incubated at room 
temperature for 1 h. GAPDH was used as the internal ref-
erence. An enhanced chemiluminescence detection kit 
(Thermo Fisher Scientific) was used to detect the bands, 
which were then quantified using Gel-Pro Analyzer soft-
ware (version 4.0; Media Cybernetics, Silver Spring, MD, 
USA).

Statistical analysis
Data were presented as means ± SD. SPSS 23.0 soft-
ware was used to perform statistical analyses. All the 
experiments were performed in three independent trails. 

Student’s t-test and one-way ANOVA followed by Tuk-
ey’s multiple comparisons test were used to perform the 
comparisons in this study. Significant difference was con-
sidered when P < 0.05.
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