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Abstract 

Background:  Some degree of spontaneous recovery is usually observed after stroke. Experimental studies have pro-
vided information about molecular mechanisms underlying this recovery. However, the majority of pre-clinical stroke 
studies are performed in male rodents, and females are not well studied. This is a clear discrepancy when consider-
ing the clinical situation. Thus, it is important to include females in the evaluation of recovery mechanisms for future 
therapeutic strategies. This study aimed to evaluate spontaneous recovery and molecular mechanisms involved in the 
recovery phase two weeks after stroke in female rats.

Methods:  Transient middle cerebral artery occlusion was induced in female Wistar rats using a filament model. Neu-
rological functions were assessed up to day 14 after stroke. Protein expression of interleukin 10 (IL-10), transforming 
growth factor (TGF)-β, neuronal specific nuclei protein (NeuN), nestin, tyrosine-protein kinase receptor Tie-2, extra-
cellular signal-regulated kinase (ERK) 1/2, and Akt were evaluated in the peri-infarct and ischemic core compared to 
contralateral side of the brain at day 14 by western blot. Expression of TGF-β in middle cerebral arteries was evaluated 
by immunohistochemistry.

Results:  Spontaneous recovery after stroke was observed from day 2 to day 14 and was accompanied by a signifi-
cantly higher expression of nestin, p-Akt, p-ERK1/2 and TGF-β in ischemic regions compared to contralateral side at 
day 14. In addition, a significantly higher expression of TGF-β was observed in occluded versus non-occluded middle 
cerebral arteries. The expression of Tie-2 and IL-10 did not differ between the ischemic and contralateral sides.

Conclusion:  Spontaneous recovery after ischemic stroke in female rats was coincided by a difference observed in 
the expression of molecular markers. The alteration of these markers might be of importance to address future thera-
peutic strategies.
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Background
Stroke is a devastating disease and the leading cause of 
disability worldwide [1–3]. It is well documented that 
sex differences play a role in stroke incidence, outcome, 
and response to potential treatments [4]. For instance, 

functional recovery after stroke is worse in women, leav-
ing women as the major burden of stroke-related disabil-
ity and institutionalization [5]. Moreover, recombinant 
tissue plasminogen activator (rt-PA) treatment demon-
strates a more favorable outcome in women and conse-
quently less risk of intracerebral hemorrhage than men 
[6, 7].

Following the acute stroke injury, there is a spon-
taneous recovery process over time. Although this 
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spontaneous functional improvement is limited, experi-
mental stroke models have reported that cellular and 
molecular mechanisms underlying the endogenous 
brain repair mechanisms involve a set of highly interac-
tive processes such as angiogenesis, scar formation and 
inflammation [8–10]. Each process consists of definite 
biomarkers, for instance, involvement of nestin in scar 
formation or recognition of tyrosine-protein kinase 
receptor Tie-2 in angiogenesis. Moreover, inflammatory 
markers [e.g., Interleukin (IL)-10] and growth factors like 
transforming growth factor (TGF) -β contribute as other 
repair-related molecular changes after stroke [8, 11, 12]. 
Signalling pathways are critical modulators of a variety of 
physiological and pathological processes including stroke 
recovery. Extracellular signal-regulated kinase (ERK) 1/2 
and protein kinase B (Akt) pathways are contributing to 
the recovery phase associated with angiogenesis and pro-
tective effects of growth factors [13, 14]. Promoting these 
interactive molecular processes has been a relevant target 
in pre-clinical studies to aid stroke recovery. However, 
the majority of pre-clinical studies are performed in male 
rodents, a clear discrepancy when considering the patient 
situation in the clinic [15, 16].

To develop therapeutic strategies, it is significant to 
understand the pathophysiology during the recovery 
phase in females. Therefore, the aim of this study was 
to investigate the spontaneous functional recovery and 
repair-related molecular changes involved in the recov-
ery phase two weeks after ischemic stroke in female rats. 
Transient middle cerebral artery occlusion (tMCAO) 
by intraluminal filament technique was used to induce 
experimental stroke. This model resembles a clinical 
situation where approximately 70% of human ischemic 
strokes affect parts of the brain nourished by the middle 
cerebral artery [17–19]. In addition, the intraluminal fila-
ment technique for inducing tMCAO is the most com-
mon method used in rodents for experimental ischemic 
stroke [18, 20].

Results
Female Wistar rats (12-week-old) were monitored for 
two to three consecutive estrous cycles by collecting 
vaginal smears and examining the types of cells present. 
Animals that were under low influence of 17β-estradiol 
underwent tMCAO (120  min) followed by reperfusion 
14 days post tMCAO. Physiological parameters including 
mean arterial blood pressure (119 ± 11.1  mm Hg), pO2 
(15.6 ± 2.4  kPa), pCO2 (7.3 ± 0.05  kPa), pH (7.3 ± 0.05), 
blood glucose (13.2 ± 1.5  mmol/L) and body tempera-
ture (36.6 ± 0.6  °C) were within acceptable limits during 
the surgical procedure. Humane endpoints were followed 
according to the study plan (e.g., monitoring body 
weight) to minimize pain and suffering and none of the 

animals were excluded from the study based on humane 
endpoint evaluation. Two animals died outside planned 
euthanasia or humane endpoints and post-surgical pro-
cedures while eight animals went through the entire 
planned experimental time course.

Spontaneous functional recovery within 14 days 
after tMCAO
Neurological deficit was evaluated according to the fol-
lowing established composite tests in stroke models: 
28-point [21] and 6-point [22, 23] neuroscore tests 
at day 1 (pre-stroke), and at day 1, 2, 5, 8 and 14 post 
tMCAO and during reperfusion. A gradually and signif-
icant recovery up to day 14 was observed by both tests 
(Fig. 1A, B). In 28-point test, the most neurological defi-
cits were observed at day 2 post stroke. These deficits 
were gradually and significantly recovered up to day 14 
[animals’ neuroscore for day 2: 15 (12.25–20) vs 21.5 
(17.5–24) for day 14, p < 0.01]. Evaluation of the 6-point 
test demonstrated that female rats elicit the greatest neu-
rological damage on day 1 post stroke. Significant recov-
ery from neurological deficits based on a6-point test was 
seen at day 14 compared to day 1 post stroke (2.5 (2–3) 
vs 3.5 (3–4) respectively, p < 0.05). However, neurologi-
cal deficits still significantly differed at day 14 compared 
to the day before stroke (21.5 (17.5–24) for 28-point 
score test and 2.5 (2–3) for 6-point score test, p < 0.05). 
To verify brain damage, silver infarct staining was per-
formed on brain Sects. 14 days after tMCAO. The extent 
of brain damage on the ipsilateral side was 17.51 ± 7.33% 
(n = 8) which corresponded to and infarct volume of 
118.12 ± 60.67 mm3. Infarct distribution is shown in rep-
resentative images of silver infarct staining (Fig. 1C).

ERK1/2 and Akt pathways were affected at day 14 
after tMCAO
The ERK1/2 and Akt pathways were evaluated at day 14 
after experimental stroke in female rat brains. The results 
demonstrate that the phosphorylation (p) state of ERK1/2 
relative to total (t) ERK1/2 normalized to β-actin was sig-
nificantly increased in the peri-infarct and ischemic core 
compared to contralateral side at day 14 after tMCAO 
(Fig.  2A, B). The expression levels revealed significant 
decrease in ratio of t-ERK1/2 to β-actin in ischemic core 
compared to control side. However, this ratio remained 
unchanged in the peri-infarct region vs control side. The 
p-Akt/t-Akt relative to β-actin was significantly increased 
at day 14 after tMCAO in peri-infarct and ischemic 
core regions compared to contralateral side (p < 0.05). 
However, the level of t-Akt significantly decreased 
after ischemic stroke in both ipsilateral peri-infarct and 
ischemic core compared to contralateral side at day 14 
after tMCAO as shown in Fig. 2C, D.
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Expression of markers involved in angiogenesis, 
scar formation and inflammation
The expression of nestin, NeuN, TGF-β, Tie-2 and IL-10 
at day 14 after tMCAO were examined in the ischemic 
region and the contralateral side of brain tissue. There 
was a significant increase in expression of nestin in both 
peri-infarct and ischemic core compared to contralat-
eral side. However, NeuN was significantly lower in both 
of the studied ischemic regions within the ipsilateral 
side compared to control side (Fig. 3A, B). Quantitative 
analysis of TGF-β bands showed enhanced expression 
in the ischemic core compared to the contralateral side 
(p < 0.05). Although expression of TGF-β increased in the 
peri-infarct region, this change was not significant when 
compared to control side. Expression of Tie-2 and IL-10 
proteins were unchanged compared to contralateral side 
in peri-infarct and ischemic core region (Fig.  3C, D). 
β-actin was used as a loading control and data for each 
molecular target were normalized by β-actin for the sta-
tistical calculations and comparisons.

TGF‑β significantly increased in occluded MCAs 
during recovery phase
Expression of TGF-β was evaluated in left (non-occluded) 
and right (occluded) MCAs by immunohistochemistry at 
day 14 after tMCAO. Qualitative assessment of acquired 
images showed that TGF-β was expressed as a cytoplas-
mic marker both in the smooth muscle cell layer and in 
endothelial cells of MCA (Fig. 4A). Moreover, expression 
of TGF-β in the smooth muscle layer of occluded MCAs 
significantly increased compared to non-occluded side 
using mean fluorescence intensity measurement (Fig. 4B, 
p < 0.05).

Discussion
In the present study, we showed that spontaneous func-
tional recovery in female rats after ischemic stroke is 
accompanied by a significantly higher expression of nes-
tin, p-Akt, p-ERK1/2 and TGF-β in ischemic regions 
compared to contralateral side at day 14. Spontaneous 
functional recovery is usually seen in weeks to months 
after a stroke in human patients [8]. Studies in animal 
models of stroke have provided insights into this sponta-
neous functional recovery and the sensorimotor sequela 
following rat models of cerebral ischemia in male rats 
have been studied previously [21]. However, studies in 
female animals are limited and, hence it is important to 
include them in preclinical stroke research [24].

In this study, a significant spontaneous recovery was 
demonstrated during a period of 2  weeks after tMCAO 
in female rats. However, we did not observe a plateau 
level in the neurological functions of female rats at day 
14. These findings are in agreement with previous stud-
ies in male animals [25, 26] and clearly indicates that 
an active recovery process is still ongoing at day 14. To 
shed more light on the point where functional recovery 
becomes more stable, the time-window for the study 
should be expanded for at least 1  month in rats since 
studies suggest that these later time points is probably 
more representative for the clinic. Additional behavioural 
tests should be performed to get a more comprehensive 
view of the recovery process. The tests used in this study 
assess a variety of responses such as motor, sensory, 
reflex and balance.

Animal studies also provide further details of the 
aligned cellular and molecular mechanisms with spon-
taneous recovery after stroke including angiogenesis, 
scar formation, inflammation and signalling pathways. 

Fig. 1  Experimental design. Transient middle cerebral artery occlusion (tMCAO) was induced in female Wistar rats at day 0 and the in vivo part 
of the study was designed for a period of two weeks. tMCAO was induced in animals that were under low influence of 17β-estradiol during their 
estrous cycle. Animals were acclimatized with animal facility conditions for 5 days before any in vivo experiments. At day 14 after reperfusion, the 
animals were euthanized and decapitated. CCA​ common carotid artery; ECA external carotid artery; ICA internal carotid artery; MCA middle cerebral 
artery
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ERK1/2 and Akt are two important pathways contribut-
ing to the pathophysiology of stroke. We showed in our 
previous studies that ERK1/2 is activated during acute 
phase of experimental stroke and involves destructive 

mechanisms i.e. inflammation and upregulation of 
vasoconstriction receptors [27, 28]. By early inhibi-
tion of ERK1/2 pathway after tMCAO, infarct size was 
reduced and neurological functions were improved 
both during acute and subacute phase [25, 26, 29]. We 
have also noticed that ERK1/2 is activated following two 
weeks after tMCAO in male rats when recovery pro-
cesses were ongoing. Interestingly, early inhibition of 
the pathway did not affect its later stage activation but 
also benefited recovery mechanisms [26]. An increase 
of p-ERK1/2 in the peri-infarct region which indicates 
activation of this pathway was also observed in the pre-
sent study 2 weeks post-stroke in female rats. Here, we 
have revealed a notable activation of p-ERK1/2 in par-
allel with active functional recovery. The involvement of 
ERK1/2 pathway in the pathophysiology and recovery 
of ischemic stroke was also reviewed elsewhere [13, 30]. 
We suggest that p-ERK1/2 is an important modulator of 
stroke pathophysiology; however, the timing in which 
this pathway is studied is very important as ERK1/2 can 
have destructive effects in the early-stage however it is 
involved in the molecular mechanisms underlying the 
event of recovery in a later stage for both female and 
male rodents.

Various markers including growth factors [31] or anti-
inflammatory cytokines [32] exert their beneficial effects 
by activation of Akt pathway after experimental stroke 
[33]. Our results showed significant reduction of t-Akt 
protein but increase in the ratio of p-Akt (ser-473) to 
t-Akt in ischemic regions compared to control side. A 
previous study suggested that phosphorylation of Akt 
(ser-473) does not necessarily correlate with its kinase 
activity since Akt is phosphorylated by neuronal insults 
and thereafter an endogenous inhibitor can extinguish its 
activity [34]. Phosphorylation of Akt Ser-473 promotes a 
Lys-48-linked polyubiquitination of Akt which leads to 
its rapid degradation [35]. Therefore, manipulation of Akt 
pathway for stroke therapy should be carefully addressed. 
We hypothesize that in absence of survival factors, Akt 
can undergo degradation via phosphorylation of Ser-473 
at longer time point after stroke in female rats; however, 
survival factors like growth factor can switch this phos-
phorylation towards Akt stability and activation. Evalu-
ation of downstream targets of Akt can provide more 
insights about contribution of Akt in recovery phase after 
stroke.

TGF-β has anti-inflammatory [36] and anti-apoptotic 
actions, promotes scar formation and angiogenesis [37–
40] through Akt and ERK1/2 pathways [13, 14]. How-
ever, most of the mechanistic studies evaluated male 
animals and studies addressing females are few. In this 
study, TGF-β levels were significantly higher in ischemic 
area compared to control side in female at day 14. Our 

Fig. 2  Spontaneous functional recovery after ischemic stroke. A 
Spontaneous recovery from day 2 to 14 after tMCAO was observed 
by 28-point test B neurological score of animals from 0 for healthy 
function to 5 for death overnight is shown. Neurological function 
of the animals was significantly affected by tMCAO, however, the 
animals showed significant functional improvement at day 14 after 
tMCAO. *Significance level at p < 0.05 for comparison between 
day -1 (pre-stroke) and day 14. #Significance level at p < 0.05 for 
comparison between day 1 (for 6-point test) and 2 (for 28-point test) 
vs day 14. Number of rats in both tests; n = 8. C Infarct distribution in 
representative silver infarct staining of brain sections. Lesioned area is 
marked in red on right hemisphere
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observation is supported by a previous study showing 
that astrocytes control neuroinflammation via TGF-β 
signalling and preserve brain function 2–3  days after 
stroke in female mice [41]. Moreover, TGF-β signalling 

in the brain after stroke is reported to be equivalent in 
males and females peaking on day 7 in mice [42].

We report for the first time and to our knowledge, 
a significant increase in the expression of TGF-β in the 

Fig. 3  ERK1/2 and Akt pathways are affected at day 14 after tMCAO. A Representative western blots of p-ERK1/2 and t-ERK1/2 for peri-infarct and 
ischemic core vs. contralateral samples. B Quantification of p-ERK1/2 (normalized to t-ERK1/2 and β-actin—left graph) and t-ERK1/2 (normalized to 
β-actin—right graph) in peri-infarct and ischemic core compared to contralateral. C Representative western blots of p-Akt and Akt for peri-infarct 
vs contralateral (left panel) and ischemic core vs contralateral (right panel). D Quantification of p-Akt (normalized to Akt and β-actin) in peri-infarct 
and ischemic core showed significant increase compared to their related contralateral samples (left graph). Akt expression was significantly lower 
in peri-infarct and ischemic core compared to contralateral (right graph). Number of animals for ischemic core; n = 7, number of animals for 
peri-infarct; n = 5. AU arbitrary units, *Significant differences (p < 0.05). The presented western blot images are cropped and the full-length blots/gels 
are presented in Additional file 2: Figure S1
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Fig. 4  Expression of Nestin, NeuN, Tie-2, IL-10 and TGF-β in brain at day 14 after tMCAO. A, B Representative western blots and quantification of 
NeuN, nestin and TGF-β in peri-infarct and ischemic core vs. contralateral side. C, D Representative western blots and quantification of Tie-2 and 
IL-10 in peri-infarct and ischemic core vs contralateral side. All markers were normalized to β-actin. Ischemic core; n = 7, peri-infarct; n = 5. AU 
arbitrary units, *Significant differences between peri-infarct or ischemic core and contralateral (p < 0.05). The presented western blot images are 
cropped and the full-length blots/gels are presented in Additional file 3: Figure S2 (Nestin and NeuN) and Additional file 4: Figure S3 (Tie-2, IL-10 and 
TGF-β)
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smooth muscle layer of the MCAs subjected to stroke 
compared to non-occluded MCAs at day 14 post-stroke 
in female rats. The cerebral vasculature crucially partici-
pates in brain recovery processes [43] and evidence has 
shown that angiogenesis supports restored perfusion in 
the ischemic border after cortical stroke in female rats 
[44]. The expression of TGF-β both in brain and MCAs 
together with the activation of ERK1/2 pathway in female 
rats can suggest that TGF-β implements its roles through 
this pathway either in angiogenesis or neuroprotection 
similar to males. However, the direct interaction of these 
components in functional improvement after stroke in 
female rats has not been addressed in this study.

Moreover, angiogenesis involves the interaction of 
other components including Tie-2, angiopoietin (Ang)-
1, 2 and vascular endothelial growth factor [39]. We 
observed no difference for Tie-2 in ischemic hemisphere 
compared to contralateral in tMCAO female rats. Simi-
lar results have been observed in male rats for the same 
studied time-points following MCAO [38]. However, 
induction of Tie-2 and Ang proteins were shown in other 
stroke studies [40, 45]. Regardless of the controversy in 
data obtained in male experimental stroke models, we 
speculate that occurrence of angiogenesis upon ischemia 
is accompanied by changes in the endogenous expression 
of other angiogenic markers but not Tie-2 in female rats.

We observed that the expression of nestin is signifi-
cantly increased in the ischemic regions compared to the 
control side during recovery phase. Nestin, an interme-
diate filament protein [46], is a marker for new neurons 
and has also been expressed in astrocytes surrounding 
infarct with formation of gliotic scar, preventing infarct 
to expand and contributing to recovery of neurological 
functions [47, 48]. It was demonstrated that formation of 
astrocytic scar aids axonal regeneration in central nerv-
ous system [49]. Our data is in parallel with male stud-
ies suggesting the expression of nestin may contribute 
to formation of gliotic scar after stroke. Enhanced adult 
neurogenesis is a prominent delayed effect and impor-
tant contribution to functional recovery after stroke [50]. 
However, the adult neurogenesis is a complex phenom-
enon and not fully understood. Doublecortin (DCX) 
positive cells are good markers to be used for adult neu-
rogenesis since these cells are the precursors of mature 
neurons. It has been demonstrated that ablation of DCX 
neuroblasts worsened functional recovery [51]. In future 
studies, an evaluation of the recruitment of neuroblast 
from subventricular zone to striatum should be included 
to obtain a more comprehensive picture of the neurogen-
esis processes.

Clinical and preclinical studies (mostly performed 
in male animals) report opposite results on the effect 
of IL-10 in response to stroke [52]. We did not observe 

any difference in IL-10 expression between ischemic and 
non-ischemic sides in female rat brain during recovery 
phase of stroke. One reason for this observation could 
be sample size and the considerable variation of IL-10 
seen between individuals. Other explanation could be 
that evaluation of IL-10 was performed at one time-
point during recovery phase. Previous study showed 
smaller infarct volume in female vs male mice at day 4 
after tMCAO was accompanied by an increased distinct 
population of IL-10-secreting CD8+CD122+ T-suppres-
sor cells in female mice as an underlying mechanism [53]. 
However, another study showed that higher level of IL-10 
was associated with poorer outcome in female patients 
but not in males [11]. The controversy in the role of IL-10 
in ischemic stroke and fewer studies in females illustrate 
the necessities of more targeted studies to evaluate pre-
cise contribution of IL-10 following acute brain injuries 
[52].

This is one of the first long-term studies performed 
on female rats after stroke investigating the recovery 
process, however to better understand the underlying 
mechanisms during the recovery phase of stroke, more 
markers should be considered in future studies repre-
senting the important processes such as neurogenesis, 
angiogenesis and synaptogenesis. Microglial activation 
has a significant important role in these processes and 
coincides with brain plasticity after stroke. To achieve 
a holistic assessment and understand the mechanisms 
involved in recovery markers for microglia and astro-
cytes should be evaluated. In our study we showed an 
enhanced expression of TGF-β that are known to be pro-
duced by microglia cells. To achieve a more extensive 
evaluation and a broader perspective of the functional 
recovery processes additional neurological tests and an 
extended time-window of the study up to at least 4 weeks 
should be performed.

Conclusions
Our study highlights the importance of studying females 
in stroke research and it provides evidence for involve-
ment of important processes during recovery phase. We 
clearly demonstrate that a spontaneous functional recov-
ery is coincided by significantly higher expression of nes-
tin, p-Akt, TGF-β and activation of ERK1/2 in ischemic 
regions following ischemic stroke in female rats. These 
findings might be part of the underlying mechanisms 
during the recovery phase of stroke and can be addressed 
to promote brain remodelling, aid stroke recovery and 
develop new therapeutic strategies in females. Spon-
taneous recovery will not be enough and there is an 
urgent need to develop new interventions that enhance 
functional recovery and counter neurological deficits in 
stroke survivors.
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Materials and methods
Animal preparation and study design
Twelve-week-old female Wistar rats were purchased 
from Charles River laboratories (Sulzfeld, Germany), 
maintained in animal conventional facility (temperature: 
21 °C and humidity: 55%) with 12 h light/dark cycle (light 
cycle: 7 a.m.–7 p.m.) and housed in cage type III H, two 
in each cage, with free access to food (Special Diets Ser-
vices RM1) and water. Sizzelnest was used as bedding 
material and the cages were enriched with chew stick and 
paper roll. After minimum 5  days of acclimatization in 
animal conventional facility, animals were monitored for 
two–three consecutive estrous cycles by determination 
of the cell types present in vaginal smear [54, 55]. Ani-
mals that were under low influence of 17β-estradiol were 
subjected to the intraluminal filament technique [26, 
29] to induce transient middle cerebral artery occlusion. 
This is to minimize hormonal fluctuation effects at the 
time of surgery as estradiol has been shown to be neu-
roprotective in ischemic stroke [4]. In total ten animals 
were utilized in the study, two of the animals died out-
side planned euthanasia or humane endpoints and post-
surgical procedures while eight animals went through 
the entire planned experimental time course. The experi-
mental design of the study is shown in Fig. 5.

Characterization of the estrus cycle
The estrous cycle was monitored daily (between 9 and 
9.30 a.m.) through vaginal smears collected by use of cot-
ton swabs and spreading onto positively charged glass 
slides. Hematoxylin/eosin staining on the smears accord-
ing to a standard protocol (4 min/30 s) made it possible 
to characterize the types of cells present (described in 
detail by [54]) and consequently to determine the day of 
the estrous cycle for each individual rat. In proestrus, the 
presence of large round nucleated epithelial cells, often 

in clusters, can be distinguished. Estrus is characterized 
by a large number of non-nucleated needle-like cornified 
cells. A combination of round epithelial cells, small leu-
kocytes and cornified cells are observed in diestrus 1 and 
2 [25, 55].

Transient middle cerebral artery occlusion (tMCAO)
Induction of tMCAO was performed as previously 
described [56]. Briefly, the right external carotid artery 
was ligated permanently and a silicon rubber-coated 
monofilament (Doccol Corporation, MA, USA) was 
inserted through the right internal carotid artery and 
advanced to the bifurcation of the middle cerebral artery 
(MCA) causing a drop in cerebral blood flow (CBF). 
Average Laser-Doppler flow reduction of CBF was 
74.12 ± 10.16% with lower inclusion limit of 60% reduc-
tion (AD instruments, Australia). The animals were eval-
uated by 6-point test [22, 23] after 2 hours of occlusion. 
Only animals receiving a score of 4 were re-anesthetized 
to proceed with the reperfusion phase. To achieve rep-
erfusion, the filament was removed and the increase of 
CBF during reperfusion was simultaneously recorded 
and verified by Laser-Doppler flowmeter. All efforts were 
made to minimize suffering; the rats received Marcaine 
(1.25 mg/kg, AstraZeneca) at the site of incisions as anal-
gesics. A subcutaneous injection of 10  ml of isotonic 
saline for rehydration was also given at the end of the sur-
gery. Humane endpoints were also considered within the 
study plan; animals’ body weight was monitored within 
two weeks post operation as a general condition check-
point. Posture, activity and social behaviour of the ani-
mals were also checked by the experimenter and staff at 
conventional animal facility. Animals that lost more than 
15% of their pre-operational body weight together with 
showing inactivity, body cramping, not responding to 
stimulation and not being able to do righting reflex were 
excluded from the study. Day 14 post-reperfusion was 

Fig. 5  Ischemia significantly increased expression of TGF-β in the smooth muscle cell layer of occluded MCAs. A Representative image of TGF-β 
expression at day 14 after tMCAO in the occluded and non-occluded MCAs. B Quantification of TGF-β mean fluorescence intensity in occluded vs 
non-occluded MCAs at day 14 after tMCAO; n = 5, *p < 0.05
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chosen as the end point of the in vivo part of the study. 
All animal surgeries were performed between 8 a.m. and 
6  p.m. in the laboratory equipped with ventilation and 
rodent anaesthetic system.

Neurologic examination
Animals were kept for 14 days after tMCAO and during 
this time, evaluated by neurological examination at day 1, 
2, 5, 8 and 14 after tMCAO according to established com-
posite tests in stroke models: 28-point [21] and 6-point 
[22, 23] tests. The rating was performed by an experi-
enced scorer starting from 0 for severe impairment to the 
maximum of 28 for healthy function of the animal in the 
28-point test. In the 6-point test, the animal was graded 
from 0 for healthy function to 5 for death overnight.

Tissue harvesting
The rats were euthanized by CO2 and decapitated at day 
14 after tMCAO accordingly to our ethical permit. Brains 
were quickly removed and immersed in ice-cold bicarbo-
nate buffer [57]. Right and left middle cerebral arteries 
(MCAs) were dissected out and fixed in 4% paraformal-
dehyde in phosphate-buffered saline (PBS, pH = 7.2) for 
2 h at 4 °C followed by cryopreservation in 10% and 25% 
sucrose in PBS. Thereafter, they were embedded in Tis-
sueTEK (Gibco, Invitrogen A/S, Taastrup, Denmark). 
After dissecting out MCAs, brains were quickly frozen 
in -20  °C methyl butane. All the tissues were stored at 
− 80 °C until use for in vitro part of the study.

Silver infarct staining
Frozen brains were cut (40-µm) at an interval of 400 µm 
on a cryostat (Microm HM 560; Thermo Scientific, MA, 
Waltham, USA). The first section of every ten sections 
was used for silver infarct staining and the other nine in 
the infarct region were used for western blot. The sec-
tions were stained according to an established method 
[58]. Each section was photographed (Infinity 2 micro-
scope camera, Lumenera Corporation Ottawa, Ontario, 
Canada) and infarct size was reported as percentage of 
ipsilateral volume using ImageJ software (http://​rsb.​info.​
nih.​gov/​ij/).

Western blot
Brains were cut into 40-µm cryosections and tissues 
were collected based on three different regions; ischemic 
core, peri-infarct and contralateral as described previ-
ously [26]. The protein samples obtained from brain 
tissues (15 µg protein/lane) were loaded on a 4–20% gra-
dient TGX precast gel (Bio-Rad Laboratories, Hercules, 
CA, USA), transferred onto a nitrocellulose membrane 

and incubated with primary antibodies overnight at 
4 °C. Subsequently, the membranes were incubated with 
appropriate secondary antibodies for 1  h at room tem-
perature. Detailed description of antibodies is provided 
in Table 1. The protein bands of interest were visualized 
by enhanced chemiluminescent staining in a Fujifilm 
LAS-100 Luminescent Image Analyzer (Stamford, CT, 
USA). The membranes were re-probed with β-actin: 
peroxidase conjugated (1:50,000, A3854, Sigma-Aldrich, 
MO, USA) for loading control.

Immunohistochemistry
Embedded and frozen MCAs were cut on a cryostat 
(Microm HM 560; Thermo Scientific, MA, Waltham, 
USA) into 10-µm sections. Thereafter, the sections were 
permeabilized in PBS containing 0.25% Triton X-100, 
blocked and incubated overnight at 4  °C with rabbit 
anti-TGF-β (1:250, Abcam, ab66043, Cambridge, UK). 
Then, the secondary antibody was applied (1  h, room 
temperature, dark); Cy3 donkey anti-rabbit (1:200, Jack-
son ImmunoResearch, 711–165-152, West Grove, PA). 
Both antibodies were diluted in PBST + 1% bovine 
serum albumin. Sections were finally mounted with 
Vectashield mounting medium (Vector Laboratories 
Inc., Burlingame, CA, USA) containing 4′,6-diamidino-
2-phenylindole (DAPI) that satins nuclei. Negative con-
trols were performed by omitting primary antibody. 
The experiment was repeated to ensure reproducibil-
ity. Immunoreactivity was visualized at the appropriate 
wavelength with an epifluorescence microscope (Nikon 
80i; Tokyo, Japan) and photographed with an attached 
Nikon DS-2MV camera with 40 × lenses.

Table 1  Primary and secondary antibody information for 
western analysis

Antibodies Dilution Supplier (catalogue no.)

Primary antibodies

 Akt 1:1000 Cell signaling (9272S)

 p-Akt (Ser473) 1:1000 Cell signaling (4058S)

 p-ERK1/2 1:2000 Cell signaling (9101)

 t-ERK1/2 1:4000 Cell signaling (9107)

 IL-10 1:1000 Abcam (ab25073)

 Nestin 1:1000 Abcam (ab6142)

 NeuN 1:10,000 Abcam (ab104224)

 TGF-β 1:250 Abcam (ab66043)

 Tie-2 1:200 SantaCruz (sc-9026)

Secondary antibodies

 Anti-rabbit IgG:peroxidase 1:2000 Cell signaling (7074)

 Anti-mouse IgG:peroxidase 1:2000 Cell signaling (7076)

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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Statistics
Data are expressed as median with interquartile range 
(IQR) except for body weight and physiological param-
eters where mean ± standard deviation (SD) is reported. 
SPSS (IBM Corp. Released 2017, Version 25. Armonk, 
NY, USA) was used to perform statistical analyses, n 
refers to number of rats and p < 0.05 was considered as 
significant.

Composite tests
Spontaneous functional recovery from neurological defi-
cits were analyzed by comparing the score of animals at 
day-1 (pre-stroke), day 2 and day 14 after stroke for the 
28-point neuroscore test and day-1 (pre-stroke), day 1 
and day 14 after stroke for the 6-point test by using Fried-
man test and Wilcoxon post-hoc with Bonferroni correc-
tion (n = 8 for each test).

Western blot
Contralateral samples together with their respective peri-
infarct (n = 5) or ischemic core samples (n = 7) were run 
on same blots. Two-tailed Wilcoxon Signed Ranks test 
were performed to analyze the difference in the expres-
sion of markers between contralateral and peri-infarct 
or between contralateral and ischemic core as related 
samples.

Immunohistochemistry
Staining was evaluated with an expert blinded to the 
study to localize positive immunoreactivity. Moreover, 
fluorescence intensity was measured in the smooth mus-
cle layer using ImageJ. The difference in mean intensity 
between right (occluded) and left (non-occluded) MCAs 
of each individual was analyzed by two-tailed Wilcoxon 
Signed Ranks test as related samples (n = 5).
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middle cerebral artery occlusion; Tie-2: Tyrosine-protein kinase receptor Tie-2.
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