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Abstract 

Background: There is growing evidence for a positive correlation between measures of muscular strength and 
cognitive abilities. However, the neurophysiological correlates of this relationship are not well understood so far. The 
aim of this study was to investigate cortical hemodynamics [i.e., changes in concentrations of oxygenated (oxyHb) 
and deoxygenated hemoglobin (deoxyHb)] as a possible link between measures of muscular strength and cognitive 
performance.

Methods: In a cohort of younger adults (n = 39, 18–30 years), we assessed (i) handgrip strength by a handhold 
dynamometer, (ii) short-term working memory performance by using error rates and reaction times in the Sternberg 
task, and (iii) cortical hemodynamics of the prefrontal cortex (PFC) via functional near-infrared spectroscopy (fNIRS).

Results: We observed low to moderate negative correlations  (rp =  ~ − 0.38 to − 0.51; p < 0.05) between reaction 
time and levels of oxyHb in specific parts of the PFC. Furthermore, we noticed low to moderate positive correlations 
 (rp =  ~ 0.34 to 0.45; p < 0.05) between reaction times and levels of deoxyHb in distinct parts of the PFC. Additionally, 
higher levels of oxyHb  (rp (35) = 0.401; p = 0.014) and lower levels of deoxyHb  (rp (34) = − 0.338; p = 0.043) in specific 
parts of the PFC were linked to higher percentage of correct answers. We also found low to moderate correlations 
(p < 0.05) between measures of handgrip strength and levels of oxyHb  (rp =  ~ 0.35; p < 0.05) and levels of deoxyHb 
 (rp =  ~ − 0.25 to − 0.49; p < 0.05) in specific parts of the PFC. However, there was neither a correlation between cogni-
tive performance and handgrip strength nor did cortical hemodynamics in the PFC mediate the relationship between 
handgrip strength and cognitive performance (p > 0.05).

Conclusion: The present study provides evidence for a positive neurobehavioral relationship between cortical 
hemodynamics and cognitive performance. Our findings further imply that in younger adults higher levels of hand-
grip strength positively influence cortical hemodynamics although the latter did not necessarily culminate in better 
cognitive performance. Future research should examine whether the present findings can be generalized to other 
cohorts (e.g., older adults).
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Background
Recent reviews provide evidence that the preservation 
of muscular strength (e.g., due to regular resistance 
training) is beneficial to maintain brain health and cog-
nitive functioning [1–4].

In this context, handgrip strength has been consid-
ered an important marker of health in general [5–8] 
and of brain health in particular [9–11]. In line with 
this assumption, there is accumulating evidence link-
ing measures of handgrip strength to cognitive func-
tioning across the human lifespan. More specifically, 
it has been observed that in older individuals, higher 
levels of handgrip strength are associated with lesser 
cognitive decline during aging [12–19] and with better 
performance in standardized cognitive tests [20–25]. 
Moreover, also in younger adults [26] and middle-aged 
adults [27] higher levels of handgrip strength were 
linked to higher cognitive performance. Accordingly, 
these findings suggest that even in younger and middle-
aged adults, a certain level of (handgrip) strength is an 
important factor contributing to cognitive well-func-
tioning. However, based on the low number of avail-
able studies incorporating those age groups, additional, 
arguably more critical investigations, are required 
before strong conclusions can be drawn with certainty.

Notably, none of the mentioned studies help answer-
ing the question why higher levels of handgrip strength 
are linked to better cognitive performance as those 
studies did not assess the neurophysiological corre-
lates (e.g., cortical hemodynamics). These neurophysi-
ological correlates (e.g., cortical hemodynamics) might 
mediate the relationship between handgrip strength 
and cognitive performance [1, 18]. The assumption 
that changes in cortical hemodynamics (e.g., changes 
in oxyHb and deoxyHb) can mediate the relationship 
between handgrip strength and cognitive performance 
emerged from studies investigating the relationships 
between cardiorespiratory fitness, cognitive perfor-
mance and cortical hemodynamics.

In particular, these previous studies observed (i) that 
higher levels of cardiorespiratory fitness (e.g., objecti-
fied by maximal oxygen uptake [ VO2max .

 ]) are associ-
ated with better cognitive performance and higher 
levels of oxyHb in the PFC [28–31] as well as (ii) that 
cortical hemodynamics (e.g., level of oxyHb concentra-
tion) mediate, at least partly, the relationship between 
cardiorespiratory fitness level and cognitive perfor-
mance [30–32].

To the best of our knowledge, there is currently no 
comparable study available that has examined the rela-
tionship between muscular strength, cognitive function-
ing, and cortical hemodynamics [1]. Hence, the current 
study aims to investigate the possible links between 
muscular strength (i.e., operationalized by handgrip 
strength), cognitive functioning (i.e., assessed by reaction 
times and errors in Sternberg task), and functional corti-
cal hemodynamics (i.e., measured by fNIRS) in younger 
adults.

Materials and methods
Participants and study design
Thirty-nine healthy right-handed, young adults [13 
female/26 male; age 24.0 ± 3.1  years; body height 
174.4 ± 9.2  cm; body mass 72.7 ± 14.2  kg; body mass 
index (BMI) 23.7 ± 3.3 kg/m2] with normal or corrected 
vision who had no history of self-reported orthopaedic, 
cardiovascular, psychiatric, and/or neurological diseases 
participated in this study.

The study was approved by the local ethics committee 
of the Medical Faculty of the Otto von Guericke Uni-
versity Magdeburg (No. 181/18) and was in accordance 
with the Declaration of Helsinki (1964). All participants 
were informed about the study procedures and provided 
written informed consent to participate. The participants 
received a compensation fee of 16 EUR.

In this cross-sectional study, the participants were 
asked to visit our laboratory once to assess their general 
participants’ characteristics, to complete questionnaires 
on mental health, sleep quality, and regular physical 
activity level, to conduct selected neuropsychological 
tests, and to assess their handedness and maximal iso-
metric handgrip strength. Furthermore, fNIRS was used 
to record the cortical hemodynamics while the partici-
pants solved the Sternberg task. All tests are described 
below in more detail.

Screening measures and handgrip strength testing
The mental health status was assessed by using the Becks 
Depression Inventory II (BDI-II) in which higher total 
scores indicate more serve depressive symptoms [33]. 
Furthermore, we evaluated sleep quality by using the 
Pittsburgh Sleep Quality Index (PSQI) [34]. A higher 
total PSQI score indicates more impaired sleep quality 
[34].

The regular physical activity level and the regu-
lar physical exercise level was objectified by using a 
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German-language questionnaire [‘Bewegungs- und 
Sportsaktivitätsfragebogen’ (BSA-F)] [35]. To rate the 
level of regular physical activity and the regular physical 
exercise, the frequency and duration for each activity or 
exercise needed to be stated and was added up to a single 
outcome value (in minutes per week).

The time to complete both parts of the Trail-Making 
Test (TMT A&B) was used to probe the individual per-
formance in visual search (TMT A) and cognitive flexibil-
ity (TMT B) [36, 37]. In addition, we calculate the time 
difference (TMT B-A) between TMT-B and TMT-A as 
measure of shifting ability [38].

To determine the handedness of the participant, the 
Edinburgh Handedness Inventory (EHI) [39] with a cut-
off value of ± 50 was used (left hander: < − 50; ambidex-
ter: between ≥ − 50 and ≤ + 50; right hander: > + 50) [40].

Handgrip strength was measured using a handhold 
dynamometer (DHD-1; Saehan®, South Korea) and fol-
lowing the recommendations provided in the South-
ampton protocol [41]. Accordingly, the participants 
were seated in a comfortable chair with their feet flat 
on the ground. The shoulder of the tested extremity was 
adducted and neutrally rotated. We advised the par-
ticipants to flex the elbow of the tested extremity at 90° 
and maintain a neutral wrist position (i.e., thumb fac-
ing upward). The participants were asked to squeeze the 
hand as hard as they can for 3  s. Each participant per-
formed three trials for each hand and after performing 
one trial, the hand was changed [41]. The maximal hand-
grip strength of the three trials of each extremity side was 
used for further analysis. To account for the influence of 

body composition, we normalized the maximal handgrip 
strength to the body mass index (BMI) of the partici-
pants by using following equation: normalized handgrip 
strength (NGS) = absolute handgrip strength (in kg)/BMI 
(in kg/m2) [42, 43].

Cognitive testing
The Sternberg  task which assesses short-term work-
ing memory [44] was used in this study because previ-
ous publications showed that Sternberg  task induces a 
robust activation of the prefrontal cortex [45–50]. At the 
beginning of the experiment, each participant was placed 
in a self-selected comfortable distance to the presenta-
tion screen (mean distance to the presentation screen: 
67.14  cm; standard deviation: 9.86  cm). We used Psy-
choPy 2 to present the Sternberg task [51–53]. As shown 
in Fig. 1, at the beginning of each trial an array of seven 
letters (i.e., the target memory set) occurred for 1.5 s on 
the screen and was followed by a retention period with 
a white fixation cross for 4 s. Afterwards, a probe letter 
which was flanked by two interrogation marks was shown 
for no more than 2 s. We asked the subjects to maintain 
the target memory set over the retention period in mind. 
When the probe letter occurred, the participants were 
advised to press the right cursor button (if the presented 
letter was included in the target memory set) or the left 
button (if the presented letter was not included in the 
target memory set) as quickly and accurately as possible.

All participants used the index finger of the right hand 
to press the left cursor button and middle finger of the 
right hand to press the right cursor button. Furthermore, 

Fig. 1 Schematic illustration of a trial of the modified Sternberg task. The trial started with a white fixation cross at the middle of a black screen (first 
picture: “ + ”) that was presented for a randomly varying period of time between 10 and 12 s. The fixation cross was followed by an encoding period 
which lasted for 1.5 s. During this period participants had to encode a string of seven letters (second picture: “DUVLASY”). After, a retention period 
of 4.0 s (third picture: “ + ”) a single probe letter flanked by two questions marks on each side was shown for a maximum duration of 2.0 s (fourth 
picture: “?? U ??”). At this point, participants were instructed to decide as fast as possible (within the response window of 2 s) whether the probe 
letter had been included in the encoding period or not. Thereafter, the next trial started with an intertrial interval of 10–12 s (fifth picture: “ + ”)
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after a trial a rest period with a randomized time interval 
of 10 to 12  s, in which the participants looked at white 
fix a fixation cross, was included to diminish possible 
resonance effects [45, 54]. Each participant solved 24 
trials and in the half of the trials the target memory set 
included the probe letter.

During Sternberg task, the behavioral performance 
for each trial (accuracy and reaction time) and cortical 
hemodynamics using functional near-infrared spectros-
copy were recorded. We averaged accuracy and reaction 
time across all trials. Accuracy was expressed as accuracy 
score (percentage of correct answers). In addition, each 
participant was adequately familiarized with the Stern-
berg task and solved ten familiarization trials before 
recording cortical hemodynamics (mean accuracy score: 
88.38%; standard deviation: 10.68%, mean reaction time: 
1.00 s; standard deviation: 0.25 s).

During the entire duration of the Sternberg task, we 
measured heart rate signal using a heart rate watch and 
a chest strap (Polar watch V800® and chest strap H10®, 
Polar Electro Oy, Kempele, Finland). The heart rate sig-
nals were processed using “Kubios HRV” (Biosignal 
Analysis and Medical Imaging Group, University Kuo-
pio, Finland; Version 3.0.0) [55, 56]. Artefact correction 
was performed for every participant separately in order 
to select the optimal threshold for artefact correction 
[56]. Possible artefacts were removed using a threshold-
based filter algorithm which was set to the lowest correc-
tion level that cleans all artefacts but does not remove too 
many normal RR intervals [56]. In the current study, we 
used a low (35 s) or a medium threshold (0.25 s). Using 
these thresholds, all values that differ more than 0.25  s 
(or 0.35  s) from the average value were replaced with 
interpolated values estimated by a cubic spline interpola-
tion [55–57]. After artefact correction, the HR time series 
was detrended by applying the smoothness-priors-based 
detrending approach (smoothing parameter, λ = 500) [55, 
56]. For analyzing the frequency bands, the frequency 
ranges were selected as follows: very low frequency 
(VLF): 0–0.04 Hz, low frequency (LF): 0.04–0.15 Hz, and 
high frequency (HF): 0.15–0.4 Hz [55, 56, 58].

Functional near‑infrared spectroscopy
fNIRS is a relatively new, non-invasive neuroimaging 
technique which is based on theory of neurovascular 
coupling and optical spectroscopy [54, 59, 60]. fNIRS 
enables the recording of changes in oxygenated hemo-
globin (oxyHb) and deoxygenated hemoglobin (deoxyHb) 
which allows the “indirect” assessment of cortical activa-
tion. A higher cortical activation is commonly indicated 
by an increase on oxyHb and a decrease in deoxyHb [54, 
60]. More detailed information on fNIRS can be found in 
the referenced literature [54, 59–66].

In the current study, we recorded changes in cortical 
hemodynamics at a frequency of 7.81 Hz by using a port-
able continuous wave fNIRS system (NIRSport™, NIRx 
Medical Technologies, Glen Head, New York, USA). 
Our fNIRS system consists of eight light sources (emit-
ting light at wavelengths of 760 and 850 nm), eight light 
detectors, and a short-distance detector bundle. The 
fNIRS optodes were placed according to the 10–20 EEG 
system [67] using a standardized cap (EasyCap GmbH, 
Herrsching, Germany). As shown in Fig.  2, our fNIRS 
setup consists of 22 long source-detector separation 
channels (LSC; ~ 27 mm to 45 mm) and 8 short source-
detector separation channels (SSC; ~ 8  mm). The LSC 
were used to measure changes in cortical hemodynamics 
while SSC were used to account for changes in extracer-
ebral blood flow (see “fNIRS data processing”). To assign 
fNIRS-signals from LSC’s to specific brain regions, we 

Fig. 2 Schematic illustration of the channel setup. The ‘red dots’ 
represent sources and the ‘blue dots’ represent detectors. A ‘dark blue 
circle’ around a detector indicates the position of a short-separation 
channel (SSC; 8 mm). Channels in ‘purple’ are combinations of 
distinct sources and detectors. The corresponding EEG-positions and 
the long-separation channel distance (LSC) between sources and 
detectors result in the following recorded measurement channels: 
Channel 1 (F4-F2; LSC: 30 mm), Channel 2 (F4-F6; LSC: 30 mm), 
Channel 3 (AF8-F6; LSC: 33 mm), Channel 4 (AF8-Fp2; LSC: 30 mm), 
Channel 5 (AF4-F2; LSC: 44 mm), Channel 6 (AF4-F6; LSC: 45 mm), 
Channel 7 (AF4-Fp2; LSC: 28 mm), Channel 8 (AF4-Afz; LSC: 36 mm), 
Channel 9 (Fpz-Fp2; LSC: 31 mm), Channel 10 (Fpz-AFz; LSC: 40 mm), 
Channel 11 (Fpz-Fp1; LSC: 30 mm), Channel 12 (AF3-AFz; LSC: 36 mm), 
Channel 13 (AF3-Fp1; LSC: 27 mm), Channel 14 (AF3-F5; LSC: 44 mm), 
Channel 15 (AF3-F1; LSC: 44 mm), Channel 16 (AF7-Fp1; LSC: 30 mm), 
Channel 17 (AF7-F5; LSC: 33 mm), Channel 18 (F3-F5; LSC: 29 mm), 
Channel 19 (F3-F1; LSC: 29 mm), Channel 20 (Fz-F2; 29 mm), Channel 
21 (Fz-F2; LSC: 40 mm), and Channel 22 (Fz-F1; LSC: 29 mm)
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performed a virtual and probabilistic spatial registration 
using the software fNIRS Optodes’ Location Decider 
(fOLD) [68] and the Broadmann atlas (BA) [69]. Based on 
this probabilistic spatial registration, our setup covered 
the following cortical regions: right dorsolateral prefron-
tal cortex (BA 9; Channel 1, 5, and 20), right dorsolateral 
prefrontal cortex (BA 46; Channel 6), left dorsolateral 
prefrontal cortex (BA 9; Channel 15, 19, and 22), left 
dorsolateral prefrontal cortex (BA46; Channel 14), right 
frontopolar area (BA 10; Channel 4, 7, 8, and 9), left fron-
topolar area (BA 10; Channel 11, 12, 13, and 16), right 
pars triangularis of Broca’s area (BA 45; Channel 2 and 
3), left pars triangularis of Broca’s area (BA 45; Channel 
17 and 18), middle frontopolar area (BA 10; Channel 10), 
and middle dorsolateral prefrontal cortex (BA 9; Channel 
21). More detailed information on spatial registration is 
provided in Additional file 1: Table S1.

fNIRS data processing
The fNIRS data were preprocessed using the software 
program Homer 2 (version 2.8) [70] and followed current 
data processing recommendations [54, 71]. At first, we 
used enPruneChannels function with a signal-to-noise 
threshold (SNR thres) of 10 to exclude to noisy channels 
[coefficient of variation (CV) > 10] from further analyses. 
In this study 1.5% of channels were excluded because they 
were considered as to noisy which were on average 0.36 
channels per individual. Then, the raw light intensity sig-
nals were converted into changes in optical density (using 
hmrIntensity2OD function) [70]. Afterwards, the fNIRS 
time series were corrected for motion artefacts [59, 72]. 
For this purpose, we used the hmrMotionCorrectWave-
let filtering function implemented in Homer 2 which is 
based on the algorithm described by Molavi and Dumont 
[73]. The threshold of the wavelet filter was set to 1.219 
times of interquartile [74–76] that corresponds to the 
recommend α of 0.1 [72, 73, 77]. Following the motion 
artefact correction, we used a bandpass filter (hmrBand-
passFilt function) with a high-pass cut-off frequency of 
0.01  Hz to account for instrumental noise and low fre-
quency drifts and a low-pass cut-off frequency of 0.09 Hz 
to account for cardiac oscillations and Mayer-waves [71]. 
Subsequently, preprocessed optical density data of both 
wavelengths were converted via the modified Beer–Lam-
bert law (MBLL) into concentration changes of oxygen-
ated hemoglobin (oxyHb) and deoxygenated hemoglobin 
(deoxyHb) by using the hmrOD2Conc function. The dif-
ferential pathlength factor which is required in the MBLL 
was calculated for each individual participant using the 
equation provided by Scholkmann and Wolf [78].

Afterwards, we used the hmrDeconvHRRF_DriftSS 
function to account for the confounding effects of extrac-
erebral (superficial) blood flow. This function is based on 

the assumptions that SSC record changes in extracerebral 
blood flow whereas LSC measures both change in super-
ficial blood flow and cortical brain tissue [54, 79]. Hence, 
the signals of SSC  can be used to regress out signals 
from extracerebral layers from LSC which result in an 
improved data quality and help to avoid “false positives” 
[80]. In the hmrDeconvHRRF_DriftSS function, the 
hemodynamic response function (HRF) is estimated by 
using a general linear model approach (GLM) that uses 
ordinary least squares [81]. As done in several previous 
publications [82–90], the HRF was modeled with a con-
secutive sequence of Gaussian functions with a standard 
deviation of 0.5 s and their means separated by 0.5 s over 
a specific regression time (used parameters in Homer 2: 
trange − 2.0 to 20; glmSolveMethod 1; idxBasis 1; par-
amsBasis 0.5 and 0.5). To account for baseline drift, it was 
modeled using a third order polynomial fit [84, 89, 91]. 
Furthermore, we used the nearest SSC as static estimator 
for regression because the location of the SSC impacts 
the performance of the regression analysis substantially 
[92]. Following the SSC regression, we used the hmr-
BlockAvg function to perform a baseline correction and 
to calculate the block averages for oxyHb and deoxyHb 
changes over all trials and for each measurement channel 
(i.e., each LSC). In order to baseline correct our data, we 
used a time period of 2 s prior to stimulus onset which is 
a commonly utilized time period in event-related fNIRS 
studies (for review see [54]). The entire period of the 
stimulus phase was used to calculate baseline-corrected 
block averages (i.e., 0 to 20 s after stimulus onset).

After pre-processing with Homer 2, the baseline-cor-
rected block averages of the time series of oxyHb and 
deoxyHb were exported and imported into Matlab (The 
Mathworks®, Natick, Massachusetts, USA). Using the 
exported block averages and an in-house Matlab soft-
ware, we calculated the median values of oxyHb and 
deoxyHb for each fNIRS measurement channel across a 
period of 0 to 16 s after trial onset. Median values were 
used for further statistical analyses because they are 
deemed to be less influenced by potential outliers [54, 
59].

Statistical analysis
The statistical analysis was performed using IBM SPSS 
(Statistical Package for Social Science, Version 26, 
Chicago, Illinois, USA). To investigate whether corti-
cal hemodynamics (e.g., oxyHb and deoxyHb) medi-
ate the relationship between measures of handgrip 
strength and measures of cognitive performance (i.e., 
reaction time in Sternberg task), a mediation analysis 
was conducted. Thereto, we assessed in the first step, 
normal distribution using the Shapiro–Wilk test. As 
the most parameters (especially fNIRS parameters) 
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were not normally distributed, we used non-para-
metric methods in the subsequent statistical analysis. 
In the second step, we examined the bivariate rela-
tionships (i) between measures of handgrip strength 
and measures of cognitive performance, (ii) between 
measures of cognitive performance and measures of 
cortical hemodynamics, and (iii) between measures 
of cortical hemodynamics and measures of handgrip 
strength by calculating non-parametric partial cor-
relations  (rp) controlling for age and gender [93, 94]. 
The correlations were rated as follows: 0 to 0.19: no 
correlation; 0.2 to 0.39: low correlation, 0.40 to 0.59: 
moderate correlation; 0.60 to 0.79: moderately high 
correlation; ≥ 0.80: high correlation [95, 96]. The level 
of statistical significance was set to α = 0.05 in correla-
tion analysis.

In the third step, we performed a robust mediation 
analysis using the SPSS extension bundle “robmed” [97] 
and the calculated mediation model includes a three-
output analyses process (Paths A–C′). In this regard, 
the associations between (i) the independent variable 
(measures of handgrip strength) and dependent vari-
able (measures of cognitive performance)—Path C, 
(ii) the independent variable (measures of handgrip 
strength) and the mediator (measures of cortical hemo-
dynamics)—Path A, and (iii) the mediator (measures 
of cortical hemodynamics) and the dependent variable 
(measures of cognitive performance)—Path B, were 
computed. Afterwards, the direct effect (Path C′) of 
the independent variable (e.g., measures of handgrip 
strength) on the dependent variable (e.g., measures of 
cognitive performance) was estimated by controlling 
for the mediator (measures of cortical hemodynamics) 
and the indirect effect (Path AB). To calculate the direct 
and indirect effects, we computed a robust mediation 
model [97] with bias-corrected bootstrap 95% confi-
dence intervals (CIs) based on 5000 bootstrap resa-
mples and entered the covariates age and gender [93, 
94]. In accordance with the literature, a significant 
mediation was assumed if the CIs in Path AB did not 
include zero whereas a partial mediation was indicated 
if the CIs of Path C′ cross zero [98–100]. Please note 
a mediation analysis was only computed if two phe-
nomena appeared: firstly, if the non-parametric par-
tial correlation analysis (see “second step” and Tables 2 
and 3) exhibited that there was a significant correla-
tion between mediator and independent variable (or 
dependent variable) and secondly, if there was a corre-
lation of at least  rp ≥ 0.2 between mediator and depend-
ent variable (or independent variable). We selected a 
threshold of  rp ≥ 0.2 because this is deemed to be the 
minimum effect size that represents a “practical” sig-
nificant effect [101].

Results
The general characteristics of the participants are 
shown in Table 1.

Correlations between measures of handgrip strength 
and cognitive performance in Sternberg task
The non-parametric partial correlations (controlling 
for the influence of age and gender) between left- and 
right-hand absolute handgrip strength (AHS) and reac-
tion time in Sternberg task [left AHS:  rp (35) = − 0.278; 
p = 0.096/right AHS:  rp (35) = − 0.157; p = 0.354] and 
between left- and right-hand normalized handgrip 
strength (NHS) and reaction time in Sternberg task 
[left NHS:  rp (35) = − 0.253; p = 0.131/right NHS:  rp 
(35) = − 0.134; p = 0.431] did not reach statistical sig-
nificance. Furthermore, we did also not observe sta-
tistically significant correlations between left- and 
right-hand absolute handgrip strength and correct 
answers in Sternberg task [left AHS:  rp (35) = 0.012; 
p = 0.945/right AHS:  rp (35) = − 0.045; p = 0.791] 
and between left- and right-hand normalized hand-
grip strength and correct answers in Sternberg task 
[left NHS:  rp (35) = 0.122; p = 0.472/right AHS:  rp 
(35) = 0.091; p = 0.592].

Table 1 Median and  interquartile range of  the  screening 
tests in the investigated sample

AHS absolute handgrip strength, A.U. arbitrary unit, BDI-II Becks Depression 
Inventory II (a score of 13 and higher indicates depression [102, 103]), bpm 
beats per minute, BSA physical activity questionnaire, derived from German 
‘Bewegungs- und Sportaktivitätsfragebogen’ (The World Health Organization 
recommends, at least, 150 min of moderate-intensity physical activity in a week 
for substantial health benefits [104]), EHI Edinburgh Handedness Inventory 
(a score of 50 and higher indicates right-handedness [40]), LF/HF ratio low-
frequency/high-frequency ratio, kg kilogram, min minutes, NHS normalized 
handgrip strength (normalized to body-mass-index), PA physical activity, PE 
physical exercise, s seconds, PSQI Pittsburgh Sleep Quality Index (a score of 6 and 
higher indicates insomnia [105]), ST Sternberg task, TMT Trail Making Test

Parameters Median ± interquartile range

BDI-II (total score) 3.0 ± 6.0

Level of education (years) 15.6 ± 2.4

PSQI (total score) 4.0 ± 2.0

BSA (min per week) PA: 236.5 ± 255.0/PE:292.5 ± 350.5

TMT A (s) 19.4 ± 6.3

TMT B (s) 42.9 ± 14.4

TMT B-A (s) 22.9 ± 11.4

EHI (total score) 83.3 ± 17.3

Mean heart rate during ST (bpm) 71.8 ± 20.2

LF/HF ratio 1.43 ± 1.51

Left/Right AHS (kg) 38.9 ± 26.2/44.1 ± 22.7

Left/Right NHS (A.U.) 1.67 ± 0.87/1.87 ± 0.78

Reaction time in ST (s) 0.94 ± 0.37

Correct answers in ST (%) 87.5 ± 12.5
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Table 2 Overview of the regional cortical changes in the concentrations of oxygenated hemoglobin (oxyHb) measured 
during the Sternberg task (ST) and their correlations with measures of handgrip strength and cognitive performance

On the left hand of the table, median ± interquartile range (IQR) of concentrations of oxyHb are displayed. On the right hand of the table, non-parametric correlations 
(controlled for age and gender) between oxyHb and absolute handgrip strength (AHS), normalized handgrip strength (NHS), reaction time and percentage of correct 
answers in the ST are shown. Significant correlations are presented in italic

BA broadman area, DLPFC dorsolateral prefrontal cortex, FPA frontopolar area, lt. left, md. middle, rp partial correlation controlling for age and gender, rt. right, ST 
Sternberg task

Channels Median ± IQR Non‑parametric partial correlations

OxyHb (µmol/L) AHS (left/right) NHS (left/right) Reaction time in ST/correct 
answers in ST

1 (rt. DLPFC; BA9) 0.017 ± 0.028 rp (35) = 0.179; p = 0.288/ 
rp (35) = 0.241; p = 0.151

rp (35) = 0.145; p = 0.391/ 
rp (35) = 0.190; p = 0.260

rp (35) = − 0.417; p = 0.010/ 
rp (35) = 0.401; p = 0.014

2 (rt. Broca; BA 45) 0.013 ± 0.058 rp (35) = 0.287; p = 0.085 
/rp (35) = 0.161; p = 0.340

rp (35) = 0.210; p = 0.212/ 
rp (35) = 0.134; p = 0.430

rp (35) = − 0.426; p = 0.009/ 
rp (35) = 0.206; p = 0.222

3 (rt. Broca; BA 45) 0.017 ± 0.053 rp (34) = 0.021; p = 0.905/ 
rp (34) = 0.075; p = 0.663

rp (34) = 0.036; p = 0.833 
/rp (34) = 0.108; p = 0.530

rp (34) = − 0.388; p = 0.019/ 
rp (34) = 0.241; p = 0.156

4 (rt. FPA; BA 10) − 0.018 ± 0.073 rp (35) = − 0.021; p = 0.903/ 
rp (35) = − 0.007; p = 0.968

rp (35) = − 0.094; p = 0.581/ 
rp (35) = − 0.061; p = 0.719

rp (35) = − 0.170; p = 0.316/ 
rp (35) = 0.249; p = 0.138

5 (rt. DLPFC; BA 9) 0.016 ± 0.052 rp (32) = 0.359; p = 0.037/ 
rp (32) = 0.257; p = 0.143

rp (32) = 0.225; p = 0.202/ 
rp (32) = 0.147; p = 0.407

rp (32) = − 0.404; p = 0.018/ 
rp (32) = 0.177; p = 0.317

6 (rt. DLPFC; BA 46) 0.021 ± 0.077 rp (34) = 0.157; p = 0.360/ 
rp (34) = 0.174; p = 0.310

rp (34) = 0.087; p = 0.613/ 
rp (34) = 0.161; p = 0.347

rp (34) = − 0.431; p = 0.009/ 
rp (34) = 0.227; p = 0.182

7 (rt. FPA; BA 10) 0.012 ± 0.035 rp (34) = 0.005; p = 0.979/ 
rp (34) = 0.053; p = 0.759

rp (34) = − 0.068; p = 0.692/ 
rp (34) = 0.009; p = 0.958

rp (34) = 0.091; p = 0.598/ 
rp (34) = − 0.160; p = 0.351

8 (rt. FPA; BA 10) 0.008 ± 0.049 rp (35) = 0.142; p = 0.402/ 
rp (35) = 0.128; p = 0.451

rp (35) = 0.013; p = 0.940/ 
rp (35) = 0.008; p = 0.964

rp (35) = − 0.299; p = 0.072/ 
rp (35) = 0.145; p = 0.391

9 (rt. FPA; BA 10) − 0.037 ± 0.043 rp (35) = 0.135; p = 0.427/ 
rp (35) = 0.108; p = 0.524

rp (35) = 0.120; p = 0.481/ 
rp (35) = 0.116; p = 0.494

rp (35) = − 0.091; p = 0.593/ 
rp (35) = 0.221; p = 0.188

10 (md. FPA; BA 10) − 0.004 ± 0.037 rp (35) = 0.246; p = 0.143/ 
rp (35) = 0.125; p = 0.460

rp (35) = 0.273; p = 0.102/ 
rp (35) = 0.152; p = 0.370

rp (35) = − 0.518; p = 0.001/ 
rp (35) = 0.173; p = 0.306

11 (lt. FPA; BA 10) − 0.019 ± 0.056 rp (35) = 0.102; p = 0.546/ 
rp (35) = − 0.018; p = 0.915

rp (35) = 0.093; p = 0.585/ 
rp (35) = − 0.014; p = 0.934

rp (35) = − 0.416; p = 0.010/ 
rp (35) = 0.045; p = 0.793

12 (lt. FPA; BA 10) 0.004 ± 0.049 rp (35) = 0.295; p = 0.077 
/rp (35) = 0.141; p = 0.405

rp (35) = 0.214; p = 0.205/ 
rp (35) = 0.072; p = 0.672

rp (35) = − 0.393; p = 0.016/ 
rp (35) = 0.103; p = 0.545

13 (lt. FPA; BA 10) − 0.003 ± 0.052 rp (34) = 0.244; p = 0.152/ 
rp (34) = 0.102; p = 0.555

rp (34) = 0.152; p = 0.375/ 
rp (34) = 0.017; p = 0.923

rp (35) = − 0.099; p = 0.566/ 
rp (35) = − 0.088; p = 0.610

14 (lt. DLPFC; BA 46) 0.018 ± 0.057 rp (34) = 0.088; p = 0.609/ 
rp (34) = 0.066; p = 0.704

rp (34) = 0.048; p = 0.782/ 
rp (34) = 0.088; p = 0.611

rp (34) = − 0.118; p = 0.492/ 
rp (34) = 0.207; p = 0.225

15 (lt. DLPFC; BA 9) 0.002 ± 0.037 rp (32) = 0.269; p = 0.125/ 
rp (32) = 0.095; p = 0.593

rp (32) = 0.242; p = 0.169/ 
rp (32) = 0.060; p = 0.736

rp (32) = − 0.459; p = 0.006/ 
rp (32) = 0.202; p = 0.251

16 (lt. FPA; BA 10) − 0.008 ± 0.063 rp (35) = 0.115; p = 0.498/ 
rp (35) = 0.167; p = 0.322

rp (35) = 0.115; p = 0.498/ 
rp (35) = 0.171; p = 0.311

rp (35) = 0.000; p = 1.000/ 
rp (35) = 0.122; p = 0.474

17 (lt. Broca; BA 45) 0.019 ± 0.071 rp (35) = 0.165; p = 0.329/ 
rp (35) = 0.116; p = 0.493

rp (35) = 0.165; p = 0.329/ 
rp (35) = 0.173; p = 0.306

rp (35) = − 0.230; p = 0.170/ 
rp (35) = 0.133; p = 0.431

18 (lt. Broca; BA 45) 0.013 ± 0.051 rp (35) = 0.089; p = 0.601/ 
rp (35) = 0.030; p = 0.860

rp (35) = − 0.014; p = 0.936/ 
rp (35) = 0.007; p = 0.970

rp (35) = 0.017; p = 0.922/ 
rp (35) = 0.033; p = 0.844

19 (lt. DLPFC; BA 9) 0.014 ± 0.035 rp (34) = 0.109; p = 0.527/ 
rp (34) = 0.020; p = 0.908

rp (34) = 0.021; p = 0.902/ 
rp (34) = − 0.029; p = 0.868

rp (34) = − 0.131; p = 0.445/ 
rp (34) = 0.089; p = 0.606

20 (rt. DLPFC; BA 9) 0.009 ± 0.031 rp (35) = 0.241; p = 0.151/ 
rp (35) = 0.288; p = 0.084

rp (35) = 0.154; p = 0.362/ 
rp (35) = 0.243; p = 0.147

rp (35) = − 0.042; p = 0.806/ 
rp (35) = 0.234; p = 0.164

21 (md. DLPFC; BA 9) 0.003 ± 0.032 rp (34) = 0. 358; p = 0.032/ 
rp (34) = 0.230; p = 0.178

rp (34) = 0.228; p = 0.181/ 
rp (34) = 0.088; p = 0.612

rp (34) = − 0.315; p = 0.061/ 
rp (34) = 0.299; p = 0.076

22 (lt. DLPFC; BA 9) 0.001 ± 0.029 rp (35) = 0.110; p = 0.517/ 
rp (35) = − 0.030; p = 0.860

rp (35) = 0.092; p = 0.587/ 
rp (35) = − 0.054; p = 0.752

rp (35) = − 0.389; p = 0.017/ 
rp (35) = 0.248; p = 0.139
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Table 3 Overview of  the  regional cortical changes in  the  concentrations of  deoxygenated hemoglobin (deoxyHb) 
measured during  the  Sternberg task (ST) and  their correlations with  measures of  handgrip strength and  cognitive 
performance

On the left hand of the table, median ± interquartile range (IQR) of concentrations of deoxyHb are displayed. On the right hand of the table, non-parametric partial 
correlations (controlled for age and gender) between deoxyHb and absolute handgrip strength (AHS), normalized handgrip strength (NHS), reaction time and 
percentage of correct answers in the ST are shown. Significant correlations are presented in italic

BA broadman area, DLPFC dorsolateral prefrontal cortex, FPA frontopolar area, lt. left, md. middle, rp partial correlation controlling for the influence of age and gender, 
rt. right, ST Sternberg task

Channels Median ± IQR Non‑parametric partial correlations

DeoxyHb (µmol/L) AHS (left/right) NHS (left/right) Reaction time in ST/correct 
answers in ST

1 (rt. DLPFC; BA9) 0.001 ± 0.005 rp (35) = − 0.197; p = 0.243/ 
rp (35) = − 0.182; p = 0.280

rp (35) = − 0.232; p = 0.167/ 
rp (35) = − 0.245; p = 0.144

rp (35) = 0.198; p = 0.240/ 
rp (35) = − 0.276; p = 0.099

2 (rt. Broca; BA 45) 0.000 ± 0.015 rp (35) = − 0.299; p = 0.072/ 
rp (35) = − 0.180; p = 0.286

rp (35) = − 0.204; p = 0.225/ 
rp (35) = − 0.133; p = 0.434

rp (35) = 0.343; p = 0.038/ 
rp (35) = − 0.142; p = 0.401

3 (rt. Broca; BA 45) − 0.002 ± 0.011 rs (34) = − 0.071; p = 0.680/ 
rp (34) = − 0.203; p = 0.234

rp (34) = − 0.088; p = 0.609/ 
rp (34) = − 0.227; p = 0.183

rp (34) = 0.262; p = 0.122/ 
rp (35) = − 0.199; p = 0.245

4 (rt. FPA; BA 10) 0.000 ± 0.023 rp (35) = − 0.301; p = 0.070/ 
rp (35) = − 0.191; p = 0.258

rp (35) = − 0.294; p = 0.077/ 
rp (35) = − 0.224; p = 0.182

rp (34) = 0.172; p = 0.307/ 
rp (35) = − 0.095; p = 0.574

5 (rt. DLPFC; BA 9) 0.000 ± 0.015 rp (32) = − 0.442; p = 0.009/ 
rp (32) = − 0.385; p = 0.025

rp (32) = − 0.454; p = 0.007/ 
rp (32) = − 0.390; p = 0.023

rp (32) = 0.441; p = 0.009/ 
rp (32) = − 0.236; p = 0.179

6 (rt. DLPFC; BA 46) − 0.006 ± 0.019 rp (34) = − 0.040; p = 0.818/ 
rp (34) = − 0.112; p = 0.514

rp (34) = 0.005; p = 0.977/ 
rp (34) = − 0.088; p = 0.610

rp (34) = 0.459; p = 0.005/ 
rp (34) = − 0.275; p = 0.105

7 (rt. FPA; BA 10) 0.003 ± 0.012 rp (34) = − 0.379; p = 0.023/ 
rp (34) = − 0.420; p = 0.011

rp (34) = − 0.339; p = 0.043/ 
rp (34) = − 0.368; p = 0.027

rp (34) = 0.306; p = 0.070/ 
rp (34) = − 0.177; p = 0.300

8 (rt. FPA; BA 10) 0.002 ± 0.013 rp (35) = − 0.363; p = 0.027/ 
rp (35) = − 0.429; p = 0.008

rp (35) = − 0.347; p = 0.035/ 
rp (35) = − 0.434; p = 0.007

rp (35) = 0.150; p = 0.376/ 
rp (35) = − 0.113; p = 0.504

9 (rt. FPA; BA 10) 0.002 ± 0.014 rp (35) = − 0.200; p = 0.234/ 
rp (35) = − 0.199; p = 0.239

rp (35) = − 0.252; p = 0.133/ 
rp (35) = − 0.218; p = 0.194

rp (35) = 0.244; p = 0.145/ 
rp (35) = − 0.113; p = 0.507

10 (md. FPA; BA 10) 0.001 ± 0.009 rp (35) = − 0.340; p = 0.039/ 
rp (35) = − 0.306; p = 0.066

rp (35) = − 0.213; p = 0.205/ 
rp (35) = − 0.188 p = 0.265

rp (35) = 0.031; p = 0.856/ 
rp (35) = 0.047; p = 0.781

11 (lt. FPA; BA 10) 0.002 ± 0.012 rp (35) = − 0.194; p = 0.251/ 
rp (35) = − 0.132; p = 0.437

rp (35) = − 0.072; p = 0.670/ 
rp (35) = − 0.021; p = 0.904

rp (35) = 0.164; p = 0.331/ 
rp (35) = − 0.085; p = 0.618

12 (lt. FPA; BA 10) 0.002 ± 0.010 rp (35) = − 0.390; p = 0.017/ 
rp (35) = − 0.264; p = 0.115

rp (35) = − 0.263; p = 0.116/ 
rp (35) = − 0.131; p = 0.438

rp (35) = 0.147; p = 0.385/ 
rp (35) = 0.048; p = 0.776

13 (lt. FPA; BA 10) 0.002 ± 0.011 rp (34) = − 0.436; p = 0.008/ 
rp (34) = − 0.326; p = 0.052

rp (34) = − 0.396; p = 0.017/ 
rp (34) = − 0.252; p = 0.137

rp (34) = − 0.163; p = 0.341/ 
rp (34) = 0.018; p = 0.916

14 (lt. DLPFC; BA 46) − 0.003 ± 0.025 rp (34) = − 0.263; p = 0.122/ 
rp (34) = − 0.270; p = 0.112

rp (34) = − 0.240; p = 0.159/ 
rp (34) = − 0.312; p = 0.064

rp (34) = 0.101; p = 0.557/ 
rp (34) = − 0.338; p = 0.043

15 (lt. DLPFC; BA 9) 0.002 ± 0.017 rp (32) = − 0.409; p = 0.016/ 
rp (32) = − 0.326; p = 0.060

rp (32) = − 0.493; p = 0.003z/ 
rp (32) = − 0.411; p = 0.016

rp (32) = 0.127; p = 0.474/ 
rp (32) = − 0.027; p = 0.879

16 (lt. FPA; BA 10) 0.001 ± 0.021 rp (35) = − 0.206; p = 0.222/ 
rp (35) = − 0.207; p = 0.219

rp (35) = − 0.097; p = 0.570/ 
rp (35) = − 0.073; p = 0.667

rp (35) = − 0.027; p = 0.872/ 
rp (35) = 0.003; p = 0.986

17 (lt. Broca; BA 45) − 0.003 ± 0.017 rp (35) = − 0.151; p = 0.373/ 
rp (35) = − 0.210; p = 0.213

rp (35) = − 0.188; p = 0.264/ 
rp (35) = − 0.244; p = 0.145

rp (35) = 0.020; p = 0.905/ 
rp (35) = − 0.021; p = 0.901

18 (lt. Broca; BA 45) 0.002 ± 0.009 rp (35) = 0.281; p = 0.092/ 
rp (35) = 0.296; p = 0.075

rp (35) = 0.293; p = 0.078/ 
rp (35) = 0.263; p = 0.116

rp (35) = − 0.055; p = 0.746/ 
rp (35) = − 0.130; p = 0.445

19 (lt. DLPFC; BA 9) 0.001 ± 0.008 rp (34) = − 0.123; p = 0.474/ 
rp (34) = − 0.181; p = 0.291

rp (34) = − 0.080; p = 0.645/ 
rp (34) = − 0.168; p = 0.327

rp (34) = − 0.154; p = 0.371/ 
rp (34) = 0.067; p = 0.698

20 (rt. DLPFC; BA 9) 0.000 ± 0.011 rp (35) = − 0.226; p = 0.179/ 
rp (35) = − 0.277; p = 0.097

rp (35) = − 0.185; p = 0.272/ 
rp (35) = − 0.328; p = 0.048

rp (35) = − 0.053; p = 0.756/ 
rp (35) = − 0.022; p = 0.898

21 (md. DLPFC; BA 9) 0.003 ± 0.010 rp (34) = − 0.276; p = 0.103/ 
rp (34) = − 0.230; p = 0.178

rp (34) = − 0.315; p = 0.061/ 
rp (34) = − 0.325; p = 0.053

rp (34) = − 0.029; p = 0.869/ 
rp (34) = − 0.113; p = 0.511

22 (lt. DLPFC; BA 9) 0.002 ± 0.009 rp (35) = − 0.155; p = 0.359/ 
rp (35) = − 0.085; p = 0.618

rp (35) = − 0.144; p = 0.395/ 
rp (35) = − 0.103; p = 0.545

rp (35) = − 0.073; p = 0.666/ 
rp (35) = 0.003; p = 0.984



Page 9 of 16Herold et al. BMC Neurosci           (2021) 22:10  

Correlations between measures of handgrip strength, 
measures of cognitive performance, and measures 
of cortical hemodynamics
The results of the partial correlation analysis (controlling 
for the influence of age and gender) between measures of 
handgrip strength, cognitive performance, and cortical 
hemodynamics are shown in Table 2 (oxyHb) and Table 3 
(deoxyHb).

With regard to oxyHb, we observed a low positive cor-
relation between the level of oxyHb in right dorsolateral 
prefrontal cortex (DLPFC) and middle DLPFC (Ch. 5 and 
Ch. 21) and left AHS. Furthermore, we found moderate 
negative correlations between level of oxyHb in specific 
channels of frontopolar area (FPA) and DLPFC and reac-
tion time, and a moderate positive correlation between 
level of oxyHb in right DLPFC (Channel 1) and percent-
age of correct answers in Sternberg task (for a detailed 
overview see Table  2). Hence, better cognitive perfor-
mance (e.g., faster reaction time and higher percentage of 
correct answers) is linked to higher levels of oxyHb (indi-
cating, in general, a higher cortical activation) in distinct 
parts of the PFC.

With regard to deoxyHb, we observed low  to  moder-
ate positive correlations between the level of deoxyHb 
in right FPA and left and right DLPFC and AHS and 
NHS (for a detailed overview see Table 3). Furthermore, 
we found a moderate positive correlation between level 
of deoxyHb in right Borca area (Channel 2) and right 
DLPFC (Channel 5 and 6) and reaction time in Sternberg 
task. In addition, we noticed a low and negative correla-
tion between the level of deoxyHb in left DLPFC (Chan-
nel 14) and percentage of correct answers in Sternberg 
task. Collectively, better cognitive performance (e.g., 
faster reaction time and higher percentage of correct 
answers) is associated with lower levels of deoxyHb (indi-
cating, in general, a higher cortical activation) in distinct 
parts of the PFC.

Mediation analysis
The results of the mediation analysis for the channels 
which meet our criteria to conduct mediation analysis 
(see ‘Statistical analysis’) are shown in Table 4.

Regarding Path A, we found that left AHS significantly 
predict [β = 0.001 (0.000); z (39) = 2.189; p = 0.029] the 
amplitude of oxyHb in Channel 2 (right Broca; BA 45) 
and that left AHS significantly predict [β = 0.000 (0.000); 
z (38) = − 2.180; p = 0.029] the amplitude of deoxyHb in 
Channel 7 (right FPA; BA 10), although the beta coeffi-
cient are very small (i.e., tending towards zero). As shown 
in Table 4, all other regressions of Path A did not reach 
statistical significance (p ≥ 0.05).

Regarding the B path, we observed that level of oxyHb 
in Channel 2 (right Broca; BA 45), Channel 5 (right 
DLPFC; BA 9), and Channel 10 (middle FPA; BA 10) 
significantly predict reaction time in Sternberg task (for 
detailed overview see Table 4). Furthermore, the level of 
deoxyHb in Channel 5 (right DLPFC; BA 9) predict the 
reaction time in Sternberg task, whereas level of deox-
yHb in Channel 14 (left DLPFC; BA 46) predict the per-
centage of correct answers in Sternberg task. The other 
regressions of Path B, which are shown in Table 4, did not 
reach statistical significance (p ≥ 0.05).

Regarding path AB and C, we found a significant direct 
effect of left AHS on reaction time in Sternberg task 
[β = − 0.004 (0.002); z (39) = − 2.175; p = 0.030; oxyHb—
Channel 2], although the beta coefficient is very small. 
However, as the 95% CI for the indirect path included 
zero, a full mediation effect of the level of oxyHb of 
Channel 2 (right Broca; BA 45) could not be assumed. 
Furthermore, we observed a statistically significant direct 
effect of left AHS [β = − 0.005 (0.002); z (39) = − 2.369; 
p = 0.018; deoxyHb—Channel 2] and left NHS 
[β = − 0.098 (0.049); z (39) = − 2.083; p = 0.037; deox-
yHb—Channel 2] on reaction time in Sternberg task, but 
with very small beta coefficients. A full mediation effect 
of deoxyHb of Channel 2 (right Broca; BA 45) could not 
be assumed because the 95% CI crossed zero. No other 
direct or indirect effects were observed to be statisti-
cally significant (for detailed overview see Table 4). Taken 
together, neither oxyHb nor deoxyHb can be considered 
significant mediators of the relationship between meas-
ures of handgrip strength and cognitive performance.

Discussion
The current study investigated the relationship between 
measures of handgrip strength, cognitive performance, 
and cortical hemodynamics. Thereto, we assessed hand-
grip strength via a handheld dynamometer and recorded 
cortical hemodynamics during a standardized cognitive 
test (Sternberg task) using fNIRS.

We observed that a higher cortical activation (objecti-
fied by higher level of oxyHb and lower levels of deox-
yHb) of distinct parts of the PFC (e.g., FPA and DLPFC; 
see Tables  2 and 3) is associated with better cognitive 
performance. This finding is in accordance with the lit-
erature reporting that, at least in older adults, a higher 
level of oxyHb in the PFC during the cognitive testing 
is associated with better cognitive performance [106]. 
In this regard, it was also observed that after an acute 
bout of physical exercise [107–110] and during physi-
cal exercise [111], higher levels of oxyHb in distinct 
parts the PFC (e.g., FPA and DLPFC) are linked to bet-
ter cognitive performance. In line with these previous 
observations, our findings buttress the assumption of a 
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Table 4 Mediation models

Independent variable (x)/
mediator (m)/dependent 
variable (y)

Path A Path B Path AB (indirect effect) Path C (direct effect)

oxyHb

 Right AHS/Ch. 1/CA in ST β = 0.000 (0.000);
z (39) = 1.828; p = 0.068

β = 64.051 (52.713); 
z (39) = 1.498; p = 0.134

β = 0.025; CI [− 0.008 to 
0.095]

β = − 0.003 (0.075); 
z (39) = − 0.234; 
p = 0.815

 Left AHS/Ch. 2/RT in ST β = 0.001 (0.000);
z (39) = 2.189; p = 0.029

β = − 1.854 (0.636);
z (39) = − 2.948; p = 0.003

β = − 0.002; CI [− 0.005 to 
0.000]

β = − 0.004 (0.002); 
z (39) = − 2.175; 
p = 0.030

 Left NHS/Ch. 2/RT in ST β = 0.016 (0.011);
z (39) = 1.537; p = 0.124

β = − 1.954 (0.710); 
z (39) = − 2.801; p = 0.005

β = − 0.032; CI [− 0.097 to 
0.003]

β = − 0.082 (0.050); 
z (39) = − 1.862; 
p = 0.063

 Left AHS/Ch. 5/RT in ST β = 0.001 (0.000);
z (36) = 1.694; p = 0.090

β = − 3.004 (1.158);
z (36) = − 2.523; p = 0.012

β = − 0.002; CI [− 0.007 to 
0.000]

β = − 0.002 (0.003); 
z (36) = − 0.680; 
p = 0.497

 Left NHS/Ch. 5/RT in ST β = 0.014 (0.011);
z (36) = 1.271; p = 0.204

β = − 3.076 (1.056); 
z (36) = − 2.857; p = 0.004

β = − 0.042; CI [− 0.150 to 
0.012]

β = − 0.038 (0.061); 
z (36) = − 0.661; 
p = 0.509

 Left AHS/Ch. 10/RT in ST β = 0.000 (0.000);
z (39) = 1.315; p = 0.188

β = − 4.091 (1.362);
z (39) = − 3.008; p = 0.003

β = − 0.002; CI [− 0.007 to 
0.001]

β = − 0.003 (0.003); 
z (39) = − 1.230; 
p = 0.219

 Left NHS/Ch. 10/RT in ST β = 0.010 (0.010);
z (39) = 1.237; p = 0.216

β = − 4.087 (1.290);
z (39) = − 3.190; p = 0.001

β = − 0.041; CI [− 0.170 to 
0.016]

β = − 0.062 (0.062); 
z (39) = − 0.998; 
p = 0.318

 Left AHS/Ch. 12/RT in ST β = 0.001 (0.000);
z (39) = 1.445; p = 0.148

β = − 1.949 (1.757);
z (39) = − 1.213; p = 0.225

β = − 0.001; CI [− 0.005 to 
0.001]

β = − 0.004 (0.003); 
z (39) = − 1.157; 
p = 0.247

 Left NHS/Ch. 12/RT in ST β = 0.009 (0.009); 
z (39) = 0.661; p = 0.509

β = − 2.101 (1.747); 
z (39) = − 1.310; p = 0.190

β = − 0.018; CI [− 0.101 to 
0.010]

β = − 0.075 (0.066); 
z (39) = − 1.211; 
p = 0.226

 Left AHS/Ch. 15/RT in ST β = 0.001 (0.000); 
z (36) = 1.557; p = 0.119

β = − 2.227 (1.656); 
z (36) = − 1.587; p = 0.112

β = − 0.002; CI [− 0.007 to 
0.000]

β = − 0.002 (0.003); 
z (36) = − 0.533; 
p = 0.594

 Left NHS/Ch. 15/RT in ST β = 0.018 (0.009); 
z (36) = 1.761; p = 0.078

β = − 2.253 (1.592); 
z (36) = − 1.685; p = 0.092

β = − 0.041; CI [− 0.135 to 
0.005]

β = − 0.040 (0.075); 
z (36) = − 0.553; 
p = 0.580

 Left AHS/Ch. 21/RT in ST β = 0.000 (0.000); 
z (38) = 1.758; p = 0.079

β = − 1.781 (1.357); 
z (38) = − 1.473; p = 0.141

β = − 0.001; CI [− 0.003 to 
0.000]

β = − 0.004 (0.003); 
z (38) = − 1.483; 
p = 0.138

 Left NHS/Ch. 21/RT in ST β = 0.007 (0.006); 
z (38) = 0.987; p = 0.324

β = − 1.878 (1.461);
z (38) = − 1.389; p = 0.165

β = − 0.013; CI [− 0.065 to 
0.012]

β = − 0.082 (0.069); 
z (38) = − 1.285; 
p = 0.199

deoxyHb

 Left AHS/Ch. 2/RT in ST β = 0.000 (0.000); 
z (39) = − 1.581; p = 0.114

β = 6.522 (5.036); 
z (39) = 1.562; p = 0.118

β = − 0.001; CI [− 0.006 to 
0.000]

β = − 0.005 (0.002); 
z (39) = − 2.369; 
p = 0.018

 Left NHS/Ch. 2/RT in ST β = − 0.003 (0.003); 
z (39) = − 1.189; p = 0.235

β = 6.710 (6.091); 
z (39) = 1.362; p = 0.173

β = − 0.019; CI [− 0.134 to 
0.010]

β = − 0.098 (0.049); 
z (39) = − 2.083; 
p = 0.037

 Left AHS/Ch. 5/RT in ST β = 0.000 (0.000); 
z (36) = − 1.944; p = 0.052

β = 6.349 (3.104); 
z (36) = 2.037; p = 0.042

β = − 0.002; CI [− 0.006 to 
0.000]

β = − 0.002 (0.003); 
z (36) = − 0.662; 
p = 0.508

 Right AHS/Ch. 5/RT in ST β = 0.000 (0.000); 
z (36) = − 1.480; p = 0.139

β = 6.989 (2.621); 
z (36) = 2.689; p = 0.007

β = − 0.002; CI [− 0.006 to 
0.000]

β = − 0.001 (0.003); 
z (36) = − 0.198; 
p = 0.843

 Left NHS/Ch. 5/RT in ST β = − 0.007 (0.005); 
z (36) = − 1.626; p = 0.104

β = 6.473 (3.060); 
z (36) = 2.183; p = 0.029

β = − 0.042; CI [− 0.169 to 
0.011]

β = − 0.046 (0.031); 
z (36) = − 0.415; 
p = 0.678
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positive neurobiobehavioural relationship between corti-
cal hemodynamics and cognitive performance.

Furthermore, we noticed that a higher level of handgrip 
strength is linked to a higher level of cortical activation 
(objectified by higher level of oxyHb and lower levels of 
deoxyHb) in distinct parts of the PFC (see Tables 2 and 
3). In the literature, it was observed that a higher level of 
cardiorespiratory fitness is positively correlated with the 
magnitude of the oxyHb in the PFC in older adults [112] 
and negatively correlated with magnitude of deoxyHb in 
right and left PFC in younger adults [113]. Consequently, 
our finding supports the general notion that a certain 
level of muscular strength (e.g., achieved by a regular 
resistance training) is beneficial for brain health (e.g., cor-
tical hemodynamics) in younger adults [1, 2]. Whether 
a training-induced increase in (handgrip) strength of 
younger adults can improve brain health remains spec-
ulative because the majority of the available studies in 
this field of research has focused on older adults [1–3]. 
By saying that, there is also some evidence available sug-
gesting that training interventions have a limited ability 
to change measures of handgrip strength in adults [114, 
115] although this finding is not universal [116]. Moreo-
ver, it is hypothesized that baseline values of (handgrip) 

strength (e.g., obtained prior to a resistance training) 
might be a more appropriate indicator regarding health-
related outcomes as compared to training-induced 
changes [117, 118]. Hence, the practical implications of 
our findings are currently not fully clear which, in turn, 
calls for further research broaden our knowledge in this 
direction.

We did not find statistical  indices providing compel-
ling evidence that in our cohort of younger adults meas-
ures of cortical hemodynamics mediate the relationship 
between handgrip strength and cognitive performance 
(see Table 4). The absence of a mediation effect could be 
related to the absence of a significant correlation between 
measures of handgrip strength and cognitive perfor-
mance. The lack of such a correlation contradicts the find-
ings of a previous study [26]. Presumably, these contrary 
findings are related to the different cognitive tests which 
have been used. In the study of Choudhary et al. [26], a 
simple reaction time task was employed whereas we have 
probed short-term working memory performance with 
the Sternberg task [44, 45] which is well-established in 
the field of exercise-cognition science [119–124]. Hence, 
our findings suggest that handgrip strength is associated 
with measures of cortical hemodynamics, but that this 

Table 4 (continued)

Independent variable (x)/
mediator (m)/dependent 
variable (y)

Path A Path B Path AB (indirect effect) Path C (direct effect)

 Right NHS/Ch. 5/RT in ST β = − 0.005 (0.005); 
z (36) = − 1.417; p = 0.156

β = 6.965 (2.587); 
z (36) = 2.788; p = 0.005

β = − 0.034; CI [− 0.147 to 
0.009]

β = − 0.028 (0.064); 
z (36) = − 0.083; 
p = 0.934

 Left AHS/Ch. 5/CA in ST β = 0.000 (0.000); 
z (36) = − 1.922; p = 0.055

β = − 133.058 (117.670); 
z (36) = − 1.223; p = 0.222

β = 0.039; CI [− 0.022 to 
0.198]

β = 0.001 (0.089); 
z (36) = − 0.202; 
p = 0.840

 Right AHS/Ch. 5/CA in ST β = 0.000 (0.000); 
z (36) = − 1.483; p = 0.138

β = − 136.131 (119.154); 
z (36) = − 1.262; p = 0.207

β = 0.030; CI [− 0.019 to 
0.170]

β = − 0.006 (0.091); 
z (36) = − 0.410; 
p = 0.682

 Left NHS/Ch. 5/CA in ST β = − 0.007 (0.005); 
z (36) = − 1.609; p = 0.108

β = − 113.039 (115.465); 
z (36) = − 1.047; p = 0.295

β = 0.737; CI [− 0.752 to 
4.501]

β = 0.912 (1.683); z 
(36) = 0.520; p = 0.603

 Right NHS/Ch. 5/CA in ST β = − 0.005 (0.005); 
z (36) = − 1.400; p = 0.161

β = − 117.697 (117.911); 
z (36) = − 1.064; p = 0.287

β = 0.568; CI [− 0.669 to 
3.706]

β = 0.691 (1.649); 
z (36) = − 0.345; 
p = 0.730

 Left AHS/Ch. 7/RT in ST β = 0.000 (0.000); 
z (38) = − 2.180; p = 0.029

β = 4.306 (11.759); 
z (38) = 0.416; p = 0.677

β = − 0.001; CI [− 0.009 to 
0.006]

β = − 0.005 (0.004); 
z (38) = − 1.147; 
p = 0.251

Left NHS/Ch. 7/RT in ST β = − 0.005 (0.004); 
z (38) = − 1.841; p = 0.066

β = 5.213 (7.642); 
z (38) = 0.739; p = 0.460

β = − 0.026; CI [− 0.174 to 
0.070]

β = − 0.091 (0.065); 
z (38) = − 1.507; 
p = 0.132

 Left AHS/Ch. 14/CA in ST β = 0.000 (0.000); 
z (38) = − 1.535; p = 0.125

β = − 160.626 (75.764); 
z (38) = − 2.060; p = 0.039

β = 0.065; CI [− 0.008 to 
0.262]

β = 0.015 (0.072); z 
(38) = 0.237; p = 0.813

 Left NHS/Ch. 14/CA in ST β = − 0.007 (0.007); 
z (38) = − 1.327; p = 0.185

β = − 154.613 (75.744); 
z (38) = − 1.994; p = 0.046

β = 1.151; CI [− 0.384 to 
5.134]

β = 0.945 (1.521); z 
(38) = 0.851; p = 0.395

Significant paths are presented in italic

AHS absolute handgrip strength, CA in ST percentage of correct answers in Sternberg task, Ch. channel, CI 95% confidence intervals, deoxyHb deoxygenated 
haemoglobin, NHS normalized handgrip strength (normalized to body-mass-index), RT reaction time in Sternberg task, ST Sternberg task
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relationship might not strictly culminate in a  superior 
cognitive performance, at least in our cohort of younger 
adults. In turn, the absence of a relationship between 
level of handgrip strength and cognitive functioning sug-
gests that in younger adults, there might be other factors 
than the level of handgrip strength being important for 
superior cognitive performance.

Given that previous studies have reported that corti-
cal hemodynamics (e.g., level of oxyHb) are a significant 
mediator of the relationship between cardiorespiratory 
fitness and cognition in older adults [30–32], it seems to 
be promising to investigate if measures of cortical hemo-
dynamics mediate the relationship between handgrip 
strength and cognitive performance in a cohort of older 
individuals. This idea is supported by the findings sug-
gesting an association between higher levels of handgrip 
strength and lesser cognitive decline in older age [12–18]. 
In this regard, it is also recommended that future stud-
ies should aim to assess further fitness dimensions (e.g., 
muscular fitness, cardiorespiratory fitness, and motor 
fitness) because it was observed that changes in differ-
ent fitness dimensions influence the brain differently 
[125–127].

Limitations
Despite our presented findings are interesting, this study 
has limitations which warrant further discussion. Firstly, 
even if we have account for the confounding influence 
of superficial blood flow by a short-separation channel 
regression, it is recommended that future studies should 
consider to quantify additional physiological parameters 
(e.g., blood pressure, respiration rate, skin conduct-
ance) to assess the influence of systemic physiological 
changes more comprehensively (also referred to as ‘sys-
temic physiological augmented fNIRS’ [128–133]) which, 
in turn, can reduce the risk of ‘false positive’ findings in 
fNIRS studies [80]. Secondly, although the sample size in 
the current study is in the range of comparable investiga-
tions [30], it is relatively small. In this context, it is also 
important to acknowledge that our findings are not gen-
eralizable because we only included young right-handed 
individuals in order to avoid laterality effects. Thirdly, 
we did not perform multiple comparison adjustments. 
However, there is an ongoing discussion about when and 
how it would be necessary to adjust for multiple com-
parisons [134–136] and it is stated that in exploratory 
studies, multiple comparison adjustments are not strictly 
required [135]. Fourthly, as the findings of our cross-
sectional study are based on correlational analyses, it is 
not possible to derive strong (causal) conclusions. Cog-
nizant of these limitations, further cross-sectional and 
interventional studies with a larger sample size are neces-
sary to confirm (or rebut) our findings and to investigate 

whether those are generalizable to other cohorts (e.g., 
older adults without and with cognitive impairments).

Conclusion
In summary, our findings show promising evidence 
for a positive neurobehavioral relationship between 
cortical hemodynamics and cognitive performance. 
Moreover, we complement the existing literature by 
adding that in younger adults higher levels of hand-
grip strength are linked to more pronounced cortical 
hemodynamics which imply that muscular strength 
influences brain health positively. However, our  work 
also  showed that in younger adults  such a positive 
effect on  a  parameter  of brain health does not neces-
sarily benefit cognitive performance as we did not find 
convincing evidence for a relationship between hand-
grip strength and cognitive performance or that cortical 
hemodynamics mediate this relationship. Considering 
that such relationships might change as function of age 
and disease, further research should aim to investigate 
whether our findings are also generalizable to different 
cohorts (e.g., older adults) and whether different fitness 
dimensions influence cognitive performance and corti-
cal hemodynamics differently.
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