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Enriched environment ameliorates adult 
hippocampal neurogenesis deficits in Tcf4 
haploinsufficient mice
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Abstract 

Background: Transcription factor 4 (TCF4) has been linked to human neurodevelopmental disorders such as intellec‑
tual disability, Pitt‑Hopkins Syndrome (PTHS), autism, and schizophrenia. Recent work demonstrated that TCF4 partici‑
pates in the control of a wide range of neurodevelopmental processes in mammalian nervous system development 
including neural precursor proliferation, timing of differentiation, migration, dendritogenesis and synapse formation. 
TCF4 is highly expressed in the adult hippocampal dentate gyrus – one of the few brain regions where neural stem / 
progenitor cells generate new functional neurons throughout life.

Results: We here investigated whether TCF4 haploinsufficiency, which in humans causes non‑syndromic forms of 
intellectual disability and PTHS, affects adult hippocampal neurogenesis, a process that is essential for hippocampal 
plasticity in rodents and potentially in humans. Young adult Tcf4 heterozygote knockout mice showed a major reduc‑
tion in the level of adult hippocampal neurogenesis, which was at least in part caused by lower stem/progenitor cell 
numbers and impaired maturation and survival of adult‑generated neurons. Interestingly, housing in an enriched 
environment was sufficient to enhance maturation and survival of new neurons and to substantially augment neuro‑
genesis levels in Tcf4 heterozygote knockout mice.

Conclusion: The present findings indicate that haploinsufficiency for the intellectual disability‑ and PTHS‑linked 
transcription factor TCF4 not only affects embryonic neurodevelopment but impedes neurogenesis in the hippocam‑
pus of adult mice. These findings suggest that TCF4 haploinsufficiency may have a negative impact on hippocampal 
function throughout adulthood by impeding hippocampal neurogenesis.
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Introduction
The transcription factor 4 (TCF4, Gene ID: 6925) forms 
together with its paralogues TCF3 and TCF12 the class 
I basic Helix-Loop-Helix (bHLH) subgroup of transcrip-
tion factors [1]. TCF4 has received growing attention fol-
lowing the discovery that loss-of-function mutations and 

single nucleotide polymorphisms are linked to neuropsy-
chiatric disease. In humans, the TCF4 gene consists of 20 
exons, 18 of which are protein-coding. Heterozygote loss-
of-function mutations of TCF4 before exon 7 have been 
linked to non-specific intellectual disability [2–4], while 
heterozygote disrupting mutations after exon 9 have been 
causally linked to Pitt-Hopkins Syndrome (PTHS, MIM 
#610954), a neurodevelopmental disorder characterized 
by distinctive facial features, moderate to severe intel-
lectual disability, autistic behavior, intermittent breath-
ing abnormalities, seizures [5–7]. Moreover, SNPs in 

Open Access

BMC Neuroscience

*Correspondence:  marie‑theres.wittmann@fau.de; chi.lie@fau.de
1 Institute of Biochemistry, Emil Fischer Center, Friedrich‑Alexander‑
Universität Erlangen‑Nürnberg, 91054 Erlangen, Germany
2 Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich‑
Alexander‑Universität Erlangen‑Nürnberg, 91054 Erlangen, Germany

http://orcid.org/0000-0002-6035-6442
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12868-020-00602-3&domain=pdf


Page 2 of 11Braun et al. BMC Neurosci           (2020) 21:50 

non-coding regions of the TCF4 gene are associated with 
an increased risk of schizophrenia and autism [8–11].

TCF4 is broadly expressed throughout the developing 
human and murine cortex and hippocampus [12–14]. 
TCF4 has pleiotropic functions in neurodevelopment. 
In rodents, TCF4 controls proliferation of cortical pre-
cursor cells, balances precursor proliferation versus dif-
ferentiation, regulates fate choices and migration, and 
modulates dendrite and spine development [14–18]. 
Loss of Tcf4 causes imbalanced generation of deep vs. 
upper layer neurons, delays neuronal differentiation, and 
impairs dendritogenesis and synapse formation [14, 17, 
19]. Development of the hippocampal formation appears 
to be particularly reliant on precise TCF4 dosage. MR-
analyses uncovered small hippocampi in individuals with 
PTHS [13, 20]. Heterozygote Tcf4 knockout mice show a 
significant reduction in hippocampal volume [13], while 
homozygote TCF4 knockout mice and transgenic mice 
with a homozygote embryonic neural stem cell specific-
deletion of TCF4 show severe hippocampal hypoplasia 
[12, 17, 19].

TCF4 is highly expressed in the adult brain [13], and 
is thought to have critical function in the regulation of 
neural plasticity [21–23]. High levels of TCF4 expres-
sion are observed in the dentate gyrus of the hippocam-
pal formation [13]. The dentate gyrus is one of the few 
regions of the CNS, where neural stem cells give rise to 
new neurons throughout adulthood. Adult hippocam-
pal neurogenesis has been unequivocally demonstrated 
in rodents and non-human primates [24]. Studies using 
different methodologies to detect adult-born neurons 
provided strong evidence for the existence of adult hip-
pocampal neurogenesis in humans [25–27]. Neverthe-
less, the notion of adult neurogenesis in humans remains 
contested as a recent study failed to detect the expres-
sion of markers indicative of neurogenesis in the adult 
human hippocampus [28]. In rodents, adult hippocampal 
neurogenesis is critical for the regulation of anxiety and 
depression-like behaviour as well as for hippocampus-
dependent learning and memory [29]. Notably, impaired 
adult hippocampal neurogenesis was found to contrib-
ute to cognitive deficits in preclinical models for autism-
spectrum disorders and intellectual disability [30–33].

Here, we sought to determine whether Tcf4 haplo-
insufficiency, which has been associated with autism 
and intellectual disability in humans, affects adult hip-
pocampal neurogenesis.  Analysis of Tcf4 heterozygote 
knockout mice revealed that Tcf4 haploinsufficiency is 
associated with a smaller size of the hippocampal neural 
stem/progenitor cell pool and impaired maturation and 
survival of adult-born dentate granule neurons. Inter-
estingly, long-term housing in an enriched environment 
enhanced survival of adult-born dentate granule neurons 

and substantially increased adult hippocampal neuro-
genesis levels, raising the interesting possibility that in 
mice behavioural modifications during adulthood can 
ameliorate a subset of neural deficits caused by TCF4 
haploinsufficiency.

Results
Tcf4 haploinsufficiency leads to proliferation deficits 
in adult neurogenesis
We first performed immunohistochemical analysis 
against TCF4 and select stage-specific markers to confirm 
the notion that TCF4 is expressed in the adult hippocam-
pal neurogenic lineage. Indeed, TCF4 co-localized with 
the radial glia like marker NESTIN (Fig. 1a), with MCM2, 
a marker for proliferating precursor cells (Fig.  1b), with 
DCX, a marker for immature neurons (Fig. 1c) and with 
CALBINDIN, a marker for mature granule cells (Fig. 1d), 
indicating that TCF4 is expressed during all stages of 
adult hippocampal neurogenesis. In line with the cen-
tral function of TCF4 in hippocampal development and 
our previous report, Tcf4 haploinsufficient mice (Tcf-
4Het) showed a significantly reduced volume of den-
tate gyrus granule cell layer [Volume in µm3: control 
5.77 × 108 ± 3.58 × 107; Tcf4Het 4.51 × 108 ± 2.41 × 107; 
p-value = 0.012 (Fig. 2a)] [13].

Next, we investigated whether adult hippocampal neu-
rogenesis is altered by Tcf4 haploinsufficiency. To assess 
the impact of Tcf4 haploinsufficiency on proliferation, 
young adult Tcf4Het and control mice were injected for 
three consecutive days with the thymidine analogue 
BrdU and sacrificed three hours after the final injec-
tion. Tcf4Het mice showed a significant decrease in the 
number of BrdU positive cells even following correc-
tion for the smaller dentate gyrus volume [BrdU + cells/
µm3: control 2.44 × 10–5 ± 1.14 × 10–6; Tcf4Het 1.93 × 10–

5 ± 1.79 × 10–6; p-value = 0.049 (Fig.  2b)], indicating 
that Tcf4 haploinsufficiency reduced proliferation. Tcf4 
haploinsufficient mice showed a strong trend towards 
lower densities of radial glia-like stem/precursor cells 
[NESTIN + cells/µm3: control 1.82 × 10–5 ± 1.94 × 10–6; 
Tcf4Het 1.31 × 10–5 ± 1.35 × 10–6; p-value = 0.0570 
(Fig.  2c)]. The fraction of MCM2 + cells amongst the 
NESTIN + population, however, was comparable [NES-
TIN + MCM2 + / NTIN + cells in %: control 24.71 ± 1.81; 
Tcf4Het 27.50 ± 2.62; p-value = 0.4006 (Fig. 2c)], suggest-
ing that while Tcf4 haploinsufficiency resulted in a strong 
tendency towards lower numbers of radial glia-like stem/
precursor cells, it did not affect stem/precursor cell acti-
vation. Given that the reduction in cell proliferation was 
comparable to the reduction in the number of radial 
glia-like stem/precursor cells, it seems likely that the 
decreased proliferative activity in the adult neurogenic 
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Fig. 1 TCF‑4 is expressed at all stages of adult neurogenesis. Representative images of TCF‑4 and NESTIN a, MCM2 b, DCX c and CALBINDIN d. 
NESTIN is a marker for aNSCs, MCM2 marks proliferative cells. DCX marks immature neurons and CALBINDIN is a marker for mature granule cell 
neurons. The triangles mark example cells with co‑expression of TCF‑4 with the respective marker. Scale bar, 50 µm
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niche of Tcf4Het mice is to a significant extent caused by 
decreased radial glia-like stem/precursor cell numbers.

Tcf4 haploinsufficiency impairs neuronal fate decision, 
differentiation and maturation in adult neurogenesis
We next determined the number of BrdU positive cells 
four weeks after a three-day BrdU pulse. Tcf4 haplo-
insufficient mice showed a reduced number of BrdU 
incorporating cells in the DG of compared to control 
[BrdU + cells/µm3: control 1.07 × 10–5 ± 1.75 × 10–6; Tcf-
4Het 4.67 × 10–6 ± 3.96 × 10–7; p-value = 0.011 (Fig. 3a)]. 
The ratio of the number of BrdU + cells between the four 
week and three-hour time-point was strongly reduced 
in Tcf4Het mice [BrdU ratio in %: control 43.93 ± 7.63; 
Tcf4Het 24.25 ± 2.3; p-value = 0.034 (Fig. 3b)], indicating 
that Tcf4 haploinsufficiency impaired survival of new-
born cells.

To evaluate the fate of surviving cells we co-stained 
BrdU with DCX and PROX1, markers for immature 
neurons and granule neurons, respectively. The frac-
tion of BrdU + cells expressing a neuronal marker 
appeared to be slightly reduced in Tcf4Het mice. Inter-
estingly, quantification of PROX1 + /DCX + double 
positive cells (immature neurons) and of PROX1 + /
DCX− cells (mature neurons) revealed a significant 
increase in the fraction of immature neurons [PROX1 + /
DCX + amongst BrdU + cells in %: control 13.98 ± 2.40; 
Tcf4Het 27.45 ± 5.55; p-value = 0.034 (Fig.  3c)] and a 
substantial decrease in the fraction of mature neurons 
[BrdU + PROX1 + DCX- in %: control 70.37 ± 3.79; Tcf-
4Het 46.17 ± 8.54; p-value = 0.017 (Fig.  3c)] amongst 
BrdU-labeled cells, suggesting that Tcf4 haploinsuffi-
ciency interfered with the generation of mature dentate 
granule neurons.

Enriched environment ameliorates defects in adult 
neurogenesis due to Tcf4 haploinsufficiency
Enriched environment (EE) is a powerful stimulant of 
adult hippocampal neurogenesis in adult wildtype mice 
[34–36]. We next sought to determine, whether EE can 
be harnessed to ameliorate neurogenesis deficits in Tcf4 
haploinsufficient mice. To this end, we placed a cohort 
of Tcf4Het mice—in parallel to the above described 
cohorts, which were kept under home cage condi-
tions—in EE conditions (Tcf4Het EE). Similar to the 

other cohorts, animals received a 3-day pulse of BrdU. 
Analysis of the Tcf4Het EE cohort was performed four 
weeks after the final BrdU injection. Quantification of 
NESTIN + and MCM2 + cells indicated that EE did not 
affect radial glia-like cell numbers and their activation 
[NESTIN + cells/µm3: Tcf4Het 1.92 × 10–5 ± 2.51 × 10–6; 
Tcf4Het EE 1.34 × 10–5 ± 1.43 × 10–6; p-value = 0.1013 
(Fig.  4a); NESTIN + MCM2 + / NESTIN + cells in 
%: Tcf4Het 26.23 ± 3.34; Tcf4Het EE 22.13 ± 2.11; 
p-value = 0.1022 (Fig. 4a)], and overall proliferation activ-
ity [MCM2 + cells/µm3: Tcf4Het 3.83 × 10–5 ± 1.21 × 10–

6; Tcf4Het EE 4.10 × 10–5 ± 3.81 × 10–6; p-value = 0.523 
(Fig. 4a)].
Tcf4Het mice housed in an enriched environment, how-

ever, had a twofold increase in BrdU + cells compared to 
Tcf4 haploinsufficient mice housed in home cages (Tcf-
4Het) [BrdU + cells/µm3: Tcf4Het 4.67 × 10–6 ± 4.43 × 10–

7; Tcf4Het EE 9.88 × 10–6 ± 1.81 × 10–6; p-value = 0.0232 
(Fig.  4d)]. Notably, EE decreased the fraction of 
PROX1 + /DCX + immature neurons [PROX1 + DCX + /
BrdU + in %: Tcf4Het 27.45 ± 5.55; Tcf4Het EE 
9.13 ± 1.37; p-value = 0.020 (Fig.  4e)] and increased the 
fraction of PROX1 + /DCX- mature granule neurons 
amongst BrdU labelled cells [BrdU + PROX1 + DCX- 
in %: Tcf4Het 46.17 ± 8.54; Tcf4Het EE 77.74 ± 3.68; 
p-value = 0.0162 (Fig.  4e)]. Collectively, these data indi-
cate that long-term exposure to EE ameliorates survival 
and maturation deficits in adult hippocampal neurogen-
esis of Tcf4 haploinsufficient mice.

Discussion
Loss-of-function mutations in the bHLH transcription fac-
tor TCF4 are linked to neurodevelopmental disorders such 
as intellectual disability and Pitt-Hopkins Syndrome. Here, 
we analysed a Tcf4 heterozygote knockout mouse model 
to begin to shed light on the dependency of adult neuro-
genesis in the hippocampal dentate gyrus on Tcf4 gene 
dosage. Our analyses confirm that constitutive Tcf4 hap-
loinsufficiency is associated with a reduced dentate gyrus 
size and reveal a profound reduction in the production of 
new dentate granule neurons during adulthood. We found 
that Tcf4 haploinsufficiency reduced the proliferative activ-
ity in the adult dentate gyrus. Given that Tcf4Het mice 
showed a 30% reduction in radial-glia like stem / progeni-
tor cells and that the reduction in proliferation (about 20% 

(See figure on next page.)
Fig. 2 Tcf4 haploinsufficiency leads to proliferation deficits in adult neurogenesis. a Representative images and quantification of the DG volume 
of control and Tcf4Het mice. Haploinsufficient mice show a reduced volume of the DG in comparison to control mice. Scale bar, 100 µm; n = 4. b 
Representative images and quantification of BrdU incorporating cells in the DG 3 h after last BrdU injection. Tcf4Het mice have a decreased number 
of BrdU + cells in DG. Scale bar, 100 µm; n = 6. c Representative images and quantification of the number of aNSCs and their activation. Tcf4Het 
animals show a strong trend towards lower number of NESTIN + cells. The activation ratio is unaltered. Scale bar, 50 µm; n = 6. Data are presented as 
mean ± SEM
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less BrdU incorporating cells) was in a comparable range, 
it seems most likely that the proliferation deficit was to a 
large part the consequence of a smaller radial-glia like stem 
/ progenitor cell pool. It will be interesting to determine, 
why the Tcf4 haploinsufficient dentate gyrus harbours a 
smaller stem cell population. Radial-glia like stem / pro-
genitor cells in the murine dentate gyrus are derived from 
neural precursor cells in the mouse dentate neuroepithe-
lium, which migrate into the primitive dentate region and 
enter quiescence around postnatal day 7. TCF4 is highly 
expressed in the dentate neuroepithelium and the devel-
oping hippocampus [12, 13]. Considering recent findings 
that TCF4 dosage affects proliferation of embryonic neural 
precursor cells [14–16] and cell migration in the develop-
ing CNS [14, 17] including the migration of hippocampal 
neural progenitors [12], it is tempting to speculate that a 
combination of proliferation and migration defects of neu-
ral precursors contribute to the decreased size of the neural 

stem/progenitor cell pool in the adult dentate gyrus. TCF4 
and the related E-protein TCF3 inhibit neural stem cell dif-
ferentiation and cell cycle exit in the adult subventricular 
zone [37] raising the alternative possibility that Tcf4 haplo-
insufficiency results in accelerated stem cell depletion due 
to premature neuronal fate commitment.
Tcf4 haploinsufficiency had a profound impact on sur-

vival of adult generated cells. It is possible that TCF4 
directly regulates the expression of, e.g., anti-apoptotic 
pathways in the adult neurogenic lineage. Adult-born 
neuron survival is highly dependent on maturation and 
synaptic integration [38–40]. Recent studies reported 
that loss-of-Tcf4 causes delayed maturation of embry-
onically and early postnatally born neurons, impairs den-
drite and synapse formation in the developing cortex [17, 
41], and decreases spine density of mature cortical and 
hippocampal neurons [42]. When analysing the marker 
profile of 4-week old adult-born neurons, we found that 
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Fig. 3 Tcf4 haploinsufficiency impairs neuronal survival, differentiation and maturation in adult neurogenesis. a Representative images 
and quantification of BrdU incorporating cells in the DG four weeks after last BrdU injection. Tcf4Het mice have a decreased number of 
BrdU + cells in DG. Scale bar, 100 µm; n = 9 and 5. b Quantification of the percentage of surviving cells normalized to number of cells that 
were generated four weeks before. c Representative images and quantification of the number of BrdU + single, BrdU + DCX + PROX1 + triple 
and BrdU + PROX1 + double positive cells four weeks after last BrdU injection. PROX1 labels granule neurons and DCX immature neurons. The 
number of immature neurons (BrdU + DCX + PROX1 + triple positive) is increased in Tcf4Het animals, whereas the number of mature neurons 
(BrdU + PROX1 + positive) is reduced. Scale bar, 50 µm; n = 9 and 5. Data are presented as mean ± SEM
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neurons in Tcf4Het mice less frequently displayed a 
mature marker profile, which suggests the possibility that 

Tcf4 haploinsufficiency impaired maturation and thereby 
decreased survival of adult-born neurons.
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Fig. 4 Enriched environment ameliorates defects in adult neurogenesis due to Tcf4 haploinsufficiency. a Representative images and quantification 
of the number of proliferative cells, NESTIN + (aNSCs) and the activation of aNSCs in the DG after five weeks of EE. The number of proliferative cells, 
aNSCs and the activation ratio of aNSC is unaltered. Scale bar, 50 µm; n = 5. b Representative images and quantification of BrdU incorporating 
cells in the DG four weeks after last BrdU injection and after five weeks of EE. Tcf4Het EE mice have an increased number of BrdU + cells 
in DG. Scale bar, 100 µm; n = 5. c Representative images and quantification of the number of BrdU + single, BrdU + DCX + PROX1 + triple 
and BrdU + PROX1 + double positive cells four weeks after last BrdU injection and after five weeks of EE. The number of immature neurons 
(BrdU + DCX + PROX1 + triple positive) is decreased in Tcf4Het EE animals, whereas the number of mature neurons (BrdU + PROX1 + positive) is 
increased. Scale bar, 50 µm; n = 5. Data are presented as mean ± SEM
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How TCF4 regulates maturation of neurons on the 
molecular level remains to be determined. E-box pro-
teins such as TCF4, TCF3 and TCF12 function as tran-
scription factors as homodimers or through formation 
of heterodimers with bHLH class II transcription fac-
tors such as the proneural transcription factors Neu-
rog1 and 2 and the transcription factors of the NeuroD 
family [1]. NeuroD1 and NeuroD2 have been implied 
in the maturation of adult-born hippocampal neurons 
[43, 44] and it will be interesting to test whether their 
interaction with TCF4 is required for dentate granule 
neuron maturation.

Given our primary goal to gain first insight how Tcf4 
haploinsufficiency, which has been causally linked to 
neurodevelopmental disorders such as Pitt-Hopkins Syn-
drome and intellectual disability, affects adult neurogen-
esis, we analysed constitutive heterozygote Tcf4 knockout 
mice. TCF4 is broadly expressed and is critical for the 
development of a number of neural and non-neural cell 
types [18, 45–48]. It therefore remains to be determined 
how decreased TCF4 dosage in different cell populations 
contributes to the impairment in adult hippocampal 
neurogenesis.

We made the interesting observation that long-term 
exposure to an enriched environment substantially 
increased the generation of new neurons with a mature 
marker profile, indicating that behavioural modifi-
cations and environmental stimulation may amelio-
rate TCF4 dosage-dependent defects. Exposure to an 
enriched environment promotes hippocampal network 
activity and stimulates adult-born neuron survival and 
maturation [35, 49]. Interestingly, recent work demon-
strated that the function of TCF4 is neuronal activity 
dependent [18, 50, 51] raising the intriguing possibil-
ity that enriched environment ameliorated hippocam-
pal neurogenesis deficits through modulation of TCF4 
activity. Previous studies showed that TCF4 dosage 
affects hippocampus-dependent behaviour [23, 51]. 
It will be interesting to determine whether deficits in 
adult neurogenesis contribute to hippocampal dys-
function in Tcf4 haploinsufficient mice and whether 
behavioural modifications such as enriched environ-
ment can ameliorate Tcf4 haploinsufficiency associ-
ated hippocampus-dependent cognitive deficits in 
adult mice.

Conclusion
Our findings suggest that in rodents Tcf4 haploinsuf-
ficiency may have a continuous negative impact on hip-
pocampal function by perturbing the physiological 
formation of new neurons in the adult dentate gyrus. 
Moreover, our findings raise the interesting possibility 

that behavioural interventions may allow to ameliorate a 
subset of Tcf4 haploinsufficiency associated neural defi-
cits during adulthood.

Methods
Animals and Ethics Statement
All animal experiments were conducted in accord-
ance with the European Communities Council Direc-
tive (86/609/EEC) and received ethical approval by the 
committee for Animal Research of the Bavarian State 
authorities. The generation of the knockout allele has 
been described previously [13]. All animals—except for 
the animals in the enriched environment experiments—
were housed in standard cages (size: 37 × 21 × 15  cm) 
with 3–4 mice per cage under a 12  h light/dark cycle 
with unlimited access to water and standard rodent 
food. Mice were housed in the animal facilities of the 
Helmholtz Center Munich and the Friedrich-Alexan-
der-Universität Erlangen. Animal care was in accord-
ance with institutional guidelines.

Genotyping of the mice was done using PCR and the 
following primers:
Tcf4Hetfwd MutTCG TGG TAT CGT TAT GCG CC.
fwd WTCCG ATG ACA GTG ATG ATG GT.
revAAG TTA AGC TGA AGT AAA TAC CCA CA.
lacZ fwdATC ACG ACG CGC TGT ATC.
lacZ revACA TCG GGC AAA TAA TAT CG.

BrdU injections and Enriched environment
At the age of eight weeks intraperitoneal 5-bromo-2′-
deoxyuridine (BrdU) injections were performed twice 
a day on three consecutive days (0.1  mg BrdU/g body 
weight, per dose). Animals were sacrificed either three 
hours (6 control and 6 haploinsufficient mice) after last 
injection or after additional four weeks (9 control and 5 
haploinsufficient mice).

An additional cohort of eight week old Tcf4 haploin-
sufficient mice (5 animals) was placed in an enriched 
environment (EE cage size: 60 × 26 × 33  cm, contain-
ing running wheels, toys, tunnels and nest materials). 
Mice were injected twice intraperitoneal with BrdU on 
three consecutive days (0.1  mg BrdU/g body weight, 
per dose). Animals were sacrificed four weeks after the 
last injection.

Tissue preparation
Mice were killed using  CO2 and perfused transcardially 
with PBS for 5  min (20  ml/min), followed by fixation 
with 4% paraformaldehyde (PFA) in 0.1  M phosphate 
buffer (PB), pH 7.4, for 5  min. Brains were postfixed 
overnight in 4% PFA at 4  °C, followed by dehydration 
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in 30% sucrose in 0.1  M PBS at 4  °C. Brains were cut 
coronally at 40 µm, using a sliding microtome. Sections 
were stored at − 20 °C.

Immunohistochemistry
Free‐floating sections were rinsed six times for 10 min in 
Tris‐buffered saline (TBS: 1  M Tris–HCL, pH 7.5/0.9% 
NaCl), and incubated for 72 h at 4  °C with primary anti-
bodies (Table  1) in blocking solution, containing 0.25% 
Triton X-100 and 3% donkey serum in TBS. Sections were 
rinsed in TBS six times for 10  min, incubated overnight 
at 4  °C with fluorochrome‐labelled secondary antibodies 
(Table 2) diluted in blocking solution, and rinsed in TBS 
three times for 10  min. Nuclei were counterstained with 
DAPI (1:10,000 in 1xTBS) for 10  min, followed by three 
rinses in TBS for 10 min. Sections were mounted on slides 
and covered with Aqua-Poly/Mount (Polysciences).

For BrdU stainings, slices were first stained for all anti-
gens of interest except for BrdU. Slices were then postfixed 
in 4% PFA for 10 min at room temperature. Sections were 
rinsed three times in TBS, incubated in 2 N HCl for 10 min 
at 37 °C. After two rinses in 0.1 M borate buffer, sections 
were washed three times with PBS. Detection of BrdU 
immunoreactivity was conducted as described above.

Imaging and quantification
For volume, BrdU, and MCM2 quantification, fluores-
cence signal was detected with an AF6000 Modular 

Systems Leica fluorescent microscope and documented 
with a SPOT-CCD camera and the Leica software LAS 
AF (Version 2.6.0.7266; Leica Microsystems, Wetzlar 
Germany). For co-localization analyses, fluorescence 
signal was detected using a Zeiss LSM 780 confocal 
microscope with four lasers (405, 488, 550, and 633 nm) 
and × 25 and × 40 objective lens. Images were processed 
using ImageJ.

For each animal, a series of every 12th section of the 
dentate gyrus was selected. Volume measurements were 
performed with ImageJ by tracing the granular zone 
of dentate gyrus. For BrdU and MCM2 quantification, 
cells in the granule cell layer and contiguous subgranular 
zone were counted (52). For co-localization analyses, all 
BrdU + cells within the granule cell layer and contiguous 
subgranular zone in at least one section were analysed for 
expression of DCX or PROX1. A minimum 50 cells per 
animal were analysed per marker and animal. Statistical 
analysis was performed with GraphPad Prism (Graphpad 
Software Inc.), using unpaired two tailed t-test. The data 
are expressed as mean values ± SEM. Significant differ-
ences were assumed at a level of p < 0.05.

Antibodies
See Tables 1 and 2.

Table 1 Primary antibodies

Antigen Host Manufacturer Dilution Catalog number RRID

BrdU Rat Serotec 1:500 OBT0030CX AB_609566

DCX Goat Santa Cruz
Biotechnology

1:500 sc‑8066 AB_2088494

CALBINDIN Mouse Swant 1:300 C9638 AB_2314070

MCM2 Mouse BD Bioscience 1:500 610,700 AB_2141952

MCM2 Rabbit Cell Signaling Technology 1:500 4007S AB_2142134

NESTIN Mouse Millipore 1:500 MAB353 AB_94911

PROX1 Rabbit Chemicon International 1:500 AB5475 AB_177485

TCF4 Rabbit Abcam 1:500 AB130014 −

Table 2 Secondary antibodies

Fluorophore Epitope Manufacturer Dilution Catalog number RRID

Alexa488 Anti‑Goat Invitrogen 1:500 A11055 AB_2534102

Alexa488 Anti‑Rabbit Invitrogen 1:500 A21206 AB_2535792

Cy3 Anti‑Rat Jackson 1:500 712–165‑153 AB_2340667

Cy3 Anti‑Goat Jackson 1:500 705–165‑147 AB_2307351

Cy5 Anti‑Mouse Jackson 1:500 715–175‑151 AB_2340820

Cy5 Anti‑Rabbit Jackson 1:500 711–495‑152 AB_2315775
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