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Abstract
Background: Differentiation of the brain during development leads to sexually dimorphic adult
reproductive behavior and other neural sex dimorphisms. Genetic mechanisms independent of
steroid hormones produced by the gonads have recently been suggested to partly explain these
dimorphisms.

Results: Using cDNA microarrays and real-time PCR we found gene expression differences
between the male and female embryonic brain (or whole head) that may be independent of
morphological differentiation of the gonads. Genes located on the sex chromosomes (ZZ in males
and ZW in females) were common among the differentially expressed genes, several of which
(WPKCI-8, HINT, MHM non-coding RNA) have previously been implicated in avian sex determination.
A majority of the identified genes were more highly expressed in males. Three of these genes
(CDK7, CCNH and BTF2-P44) encode subunits of the transcription factor IIH complex, indicating a
role for this complex in neuronal differentiation.

Conclusion: In conclusion, this study provides novel insights into sexually dimorphic gene
expression in the embryonic chicken brain and its possible involvement in sex differentiation of the
nervous system in birds.

Background
Sexual differences that arise in the brain during embryonic
development underlie sex-specific reproductive behavior
in adults of vertebrate species. Better knowledge of the
mechanisms behind sexual differentiation of the nervous
system can contribute to the understanding of the brain's
functions and its susceptibility to disease [1], and is criti-

cally needed in the context of developmental neurotoxic-
ity and chemically induced disruption of the
neuroendocrine system [2]. For a long time the idea pre-
vailed that somatic tissues in the embryo are gender neu-
tral until the gonads become hormonally active following
their sex-specific differentiation, a process presumed to be
governed by cell-autonomous programs genetically deter-
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mined by the sex chromosomes [3-5]. However, several
recent studies indicate that sex-specific neuronal charac-
teristics may be influenced by genetic mechanisms preced-

ing or occurring in parallel with the effects produced by
the gonadal hormones [6]. That the genetic sex of neurons
contributes to the process of sexual differentiation is illus-
trated by studies of the neural song circuit in a gynandro-
morphic zebra finch, where genetically male and female
brain cells develop differently in the presence of the same
levels of circulating gonadal hormones [7].

Birds, in which males are homogametic (ZZ) and females
heterogametic (ZW), provide attractive models for the
study of normal and disturbed sex-related neurobehavio-
ral development [7,8]. The recent advent of chicken
expressed sequence tag (EST) clone collections [9,10] and
the release of the first draft sequence of the chicken
genome [11] has paved the way for genome-wide studies
of sexual differentiation in the chicken. In the chicken, the
indifferent embryonic gonad rudiments differentiate mor-
phologically around embryonic day (ed) 6.5 [12,13],
whereas the expression of enzymes involved in steroido-
genesis can be detected as early as ed2 [12], and estrogen
receptor (ER) mRNA is detectable in the male and female
urogenital system from ed4.5 [14]. The earliest signs of
sexually dimorphic expression of genes related to gonadal
hormones and steroidogenesis, however, have been
detected at ed5 when mRNA for anti-Müllerian-hormone
is more abundant in males [15], and aromatase [16] in
females.

In the present study, we used cDNA microarrays to inves-
tigate if there are gene expression differences between the
male and female embryonic brain (or whole head) that
may be independent of morphological differentiation of
the gonads. We report evidence for sex-related gene
expression differences from ed4 (whole head) through
ed10 (brain) for several genes located on sex chromo-
somes. We propose that intrinsic genetic mechanisms are
involved in sexual differentiation of the chicken brain,
and that sex-linked genes may play key roles.

Results
Identification of gene expression differences between male 
and female embryonic chicken brains
To study sex-specific gene expression in the developing
brain of chicken embryos during stages around morpho-
logical differentiation of the gonads, total RNA extracted
from male and female heads on ed4 and ed6, and brains
on ed8 and ed10, was subjected to replicated microarray
analysis using cDNA microarrays containing approxi-
mately 14,000 EST clones. For each sex, we generated a
total of 12 biologically independent samples, comprising
either individuals (ed10) or pools of four individuals
(ed4, 6, 8 and 10). These 24 samples were analyzed on 20
array slides, with technical replication as shown in Figure
1. Using an empirical Bayes moderated t-test [17], and
adjusted p-values according to Benjamini and Hochberg

Experimental designFigure 1
Experimental design. A total of 20 microarray hybridizations 
were performed, addressing biological variation through the 
use of 12 biologically independent samples for each sex, and 
technical variation through Cy3/Cy5 dye reversal as follows. 
(A) For each of the four embryonic stages (ed4, 6, 8 and 10), 
two samples per sex were generated by pooling equal 
amounts of total RNA from four individual male (M) or 
female (F) whole heads (ed4 and 6) or brains (ed8 and 10). 
Each RNA pool was converted to two cDNA samples, 
tagged with Cy3 and Cy5-capture sequence (Genisphere), 
respectively, and hybridized to two microarray slides, as illus-
trated by arrows. Arrowhead indicates Cy5-labeled sample. 
(B) For ed10, total RNA from four individual male (M) and 
female (F) brains were separately tagged with either Cy3 or 
Cy5-capture sequence during cDNA synthesis, and analyzed 
on four microarray hybridizations with dye-reversal as illus-
trated by arrows.
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[18], we found 146 clones with significant differential
expression (adjusted p-value < 0.0005, corresponding to a
B score threshold of 3.413) across all investigated embry-
onic stages (Figure 2). For most of these clones, the log2
female/male ratios were relatively similar across the stud-
ied developmental stages (Figure 3, see Additional File 1).
Importantly, for a majority of these clones the expression
differences between males and females were present at the
earliest embryonic stage (Figure 3, see Additional File 1),
i.e. well before morphological gonadal differentiation.

Characterization of differentially expressed genes
The 146 identified clones (see Additional File 2) were
found to represent 133 genes, 19 of which were more
highly expressed in females, and 114 in males (Table 1).
Among the 'female genes', three are located on the female-
specific W chromosome (Table 2), one on the Z chromo-
some (Table 2) and 11 on autosomes, whereas for four
genes the location is unknown (Table 1). Among the 114
'male genes', 61 are located on the Z chromosome (Table
2) and 29 on autosomes, and for another 29 genes the

location is unknown (Table 1). Hence, given the fraction
of Z-linked clones present in the microarray (257 clones
out of ~14,000), genes annotated as being located on the
Z chromosome appeared overrepresented among the dif-
ferentially expressed genes (Table 1). As the chicken W
chromosome is still poorly characterized, with many gaps
in the sequence, the same conclusion is less straightfor-
ward to draw about W-linked genes (for further details see
the UCSC Genome Browser Gateway [19]).

The differential expression of selected genes on ed4 (and,
for some genes, ed8) was investigated by real-time PCR of
individual samples (see Methods) and the results (see
Additional File 3) are presented below in the context of
the chromosomal locations of these genes.

W-linked genes
Since the W chromosome is present only in female chick-
ens, the expression of W-linked genes was reflected in the
microarray analysis by high log2 female/male ratios (Fig-
ure 3), and in the real-time PCR analysis by even higher

Expression difference between females and males of W-linked (red), Z-linked (blue), and autosomal (yellow) genes, and genes with unknown location (black), at ed4, 6, 8 and 10, respectively, for the 146 clones identified as significantly dif-ferentially expressed (adjusted p-value < 0.0005) in the microarray analysisFigure 3
Expression difference between females and males of W-
linked (red), Z-linked (blue), and autosomal (yellow) genes, 
and genes with unknown location (black), at ed4, 6, 8 and 10, 
respectively, for the 146 clones identified as significantly dif-
ferentially expressed (adjusted p-value < 0.0005) in the 
microarray analysis. The log2 female/male ratios are averages 
between four replicate microarrays, using either the design 
illustrated in Figure 1A (ed4, ed6, ed8 and ed10), based on 
pools, or the design in Figure 1B (ed10S), based on separate 
individuals.
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Microarray analysis of gene expression differences between female and male chicken embryos across four embryonic stages (ed4, 6, 8 and 10) in the whole head (ed4 and 6) and brain (ed8 and 10)Figure 2
Microarray analysis of gene expression differences between 
female and male chicken embryos across four embryonic 
stages (ed4, 6, 8 and 10) in the whole head (ed4 and 6) and 
brain (ed8 and 10). The volcano plot shows the magnitude of 
differential expression (log2 female/male ratio) versus the 
posterior log odds of differential expression (B score) for 
each of 10,702 microarray clones (each represented by a 
dot) included in the analysis (see Methods). The horizontal 
line marks the threshold (B score > 3.413) for selecting a 
clone as significantly (adjusted p-value < 0.0005) more highly 
expressed in males (blue) or females (red).
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(technically 'infinite') ratios (Table 3). An exception from
this was SPINW, for which the exclusive expression in
females was not indicated by similarly high log2 female/
male ratios in the microarray analysis (see Additional File
2). However, unlike what is known for the other W-linked
genes reported here, SPINW has a counterpart (SPINZ) on
the Z chromosome (see below). SPINW was found by
real-time PCR to be expressed in the female head on ed4
(Table 3, see Additional File 3). Also the expression of
WPKCI-8, for which female expression at all stages was
detected by seven clones in the microarray analysis (see
Additional File 2), was verified in the ed4 female head by
real-time PCR.

The sequence of the EST clone WLA084D05 shows no
similarity to any known gene or putative protein. It is part
of the UniGene entry Gga.16155 and the TIGR Gene
Index entry TC216880 (Release 10.0), located about 300
nucleotides from a chicken sequence similar (>90%
sequence alignment match at the amino acid sequence
level) to the Ube2r2 mouse sequence (see Additional Files
4 and 5). Using primers designed to amplify this putative
Ube2r2 homolog, we did not detect any significant differ-
ential expression in embryonic chicken heads. However,
using primers amplifying the WLA084D05 sequence, we
found expression in heads from 4-day-old female
embryos (Table 3). It remains to determine whether this
EST may represent a novel W-linked gene (Figure 4, see
Additional File 4), which we provisionally suggest calling
'avian brain W-linked transcript' (ABWT).

Z-linked genes
Whereas half of the genes (56 of 114) suggested from the
microarray study to be more highly expressed in males are
located on the Z chromosome, only one clone with
female-enhanced expression is known to be Z-linked
(Tables 1 and 2). We found 141 nucleotides of this clone
(RJA001B07) to align with high similarity (98% nucle-
otide sequence identity) to a partial sequence of the Gen-

Bank entry with accession AB046698 (Figure 5),
representing a Z-linked male hypermethylated (MHM)
region. This sequence is thought to be specifically tran-
scribed into a non-coding nuclear RNA in females [20].
Using primers designed to discriminate between the
RJA001B07 and AB046698 sequences (Figure 5), we
found female-specific transcription for both of these
MHM genomic regions (Table 4).

Real-time PCR analysis confirmed the male-enhanced
microarray expression for all Z-linked genes examined
(Table 4). We also found significantly higher expression
in males (p < 0.05) for two Z-linked genes (CDK7 and the
Z-linked WPKCI-8 homolog HINT), but not for a third
(DMRT1), that were not represented in the microarray but
are functionally related (see Discussion) to other genes
identified as differentially expressed (Table 4).

A close to two-fold higher expression in males was
observed for most of the Z-linked genes in the real-time
PCR analysis (Table 4), suggestive of gene dosage. Excep-
tions were BTF2-P44, CDK7 and HMGCOA. No differen-
tial expression was detected by real-time PCR for three
genes (ANXA1, ZO-2 and ZOV3) that were randomly
selected among the non-differentially expressed Z-linked
genes in the microarray experiment (Table 4), supporting
that only certain Z-linked genes are more highly expressed
in males. A fourth Z-linked gene (TXN) randomly selected
among genes that were not differentially expressed in the
microarray analysis was revealed by real-time PCR to be
more highly expressed in males (Table 4). However,
examination of the corresponding microarray clone
(RJA044E12) by sequencing showed that the spotted
cDNA contained vector sequence only.

Genes located on autosomes or having unknown 
chromosomal location
Differential expression could be confirmed by real-time
PCR for only three genes out of 14 analyzed genes with

Table 1: Chromosomal distribution of differentially expressed clones and genes

Differentially expressed clones and genes

'Male'a 'Female'a 'Total'

Chromosome Clones Genesb Clones Genesb Clones/Genesb Array clonesc

Chr W 0 0 9 3 9/3 11
Chr Z 61 56 1 1 62/57 257

Autosomal Chr 29 29 11 11 40/40 10312
Unknown 31 29 4 4 35/33 3327

Total 121 114 25 19 146/133 13907

a 'Male' clones/genes are those more highly expressed in males and 'female' clones/genes are more highly or only expressed in females.
b The 146 clones correspond to 134 genes.
c The total chromosomal distribution of clones spotted onto the arrays as determined by a combination of manual and automated annotation.
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Table 2: Differentially expressed clones located to sex chromosomes

Gene Chra More highly 
expressed in

Clone IDb Log 2 female/male 
(min-max)c

Note

ABWT W Female WLA084D05 1.79–3.3 Confirmed (table 3)
SPINW W Female RJA067D01 0.49–0.55 Confirmed (table 3)

WPKCI-8 W Female RJA012A11 3.35–3.96 Confirmed (table 3)
WPKCI-8 W Female RJA017G02 1.44–4.01
WPKCI-8 W Female RJA066A02 0.30–1.99
WPKCI-8 W Female RJA081B07 1.35–3.15
WPKCI-8 W Female WLA034C12 1.66–2.77
WPKCI-8 W Female WLA081D02 2.40–3.40
WPKCI-8 W Female WLA096H02 1.85–3.38

3010001K23RIK Z Male ChEST386O13 -(0.61–0.84)
AGTPBP1 Z Male WLB113E12 -(0.17–0.51)

AP3S1 Z Male RJB097F02 -(0.31–0.58)
AP3S1 Z Male WLB083F12 -(0.34–0.59)

APG12L Z Male WLB057D05 -(0.12–0.49)
APTX Z Male RJB091E05 -(0.50–0.59)
BRT1 Z Male RJA090E06 -(0.15–0.28)

BTF2-P44 Z Male WLB041B10 -(0.32–0.52) Confirmed (table 4)
CAG31437 Z Male WLA074E07 -(0.18–0.50)
CBWD2 Z Male RJA111F05 -(0.12–0.55)
CCDC2 Z Male RJB037B08 -(0.42–0.74)
CCDC2 Z Male WLB116D01 -(0.12–0.55)
CCNH Z Male WLB057D11 -(0.44–0.75) Confirmed (table 4)
CLA Z Male WLB050E07 -(0.58–0.80) Confirmed (table 4)
CLA Z Male WLB040F04 -(0.31–0.71) Confirmed (table 4)

COX7C Z Male RJB015D04 -(0.65–0.79)
DHFR Z Male RJA087D10 -(0.19–0.72) Confirmed (table 4)

DNAJA1 Z Male WLA058H10 -(0.27–0.45)
DNAJA1 Z Male WLA019B09 -(0.17–0.34)

EDG2 Z Male ChEST21M3 -(0.19–0.37)
EST unknown Z Male RJA039B04 -(0.39–0.65)
EST unknown Z Male RJA096G01 -(0.37–0.41)
EST unknown Z Male RJA118E07 -(0.24–0.50)
EST unknown Z Male RJB015F01 -(0.19–0.44)
EST unknown Z Male RJB064G03 -(0.37–0.55)
EST unknown Z Male WLA033F09 -(0.63–0.76)
EST unknown Z Male WLA075A02 -(0.31–0.42)
EST unknown Z Male WLB060B10 -(0.38–0.50)
EST unknown Z Male WLB117F04 -(0.13–0.40)

FLJ21657 Z Male WLB055E01 -(0.27–0.44)
FNTA Z Male ChEST249K9 -(0.13–0.43)
GK004 Z Male RJB071E12 -(0.30–0.42)
GNG10 Z Male WLB054D11 -(0.51–0.62)

HMGCOA Z Male ChEST873P23 -(0.32–0.63) Confirmed (table 4)
HNRNPK Z Male WLB066G09 -(0.15–0.39)
HSPC097 Z Male WLB040G10 -(0.15–0.35)

IDUA Z Male WLA061C06 -(0.23–0.45)
IKAP Z Male WLB112G04 -(0.62–0.75)

LOC389293 Z Male RJA119B07 -(0.16–0.36)
LOC427191 Z Male WLB133D02 -(0.43–0.49)
LOC427252 Z Male WLB033H03 -(0.23–0.35)

MAK10 Z Male RJA024F07 -(0.51–0.77)
MHM region Z Female RJA001B07 0.44–2.58 Confirmed (table 4)

MSH3 Z Male ChEST701C3 -(0.57–0.90)
NANS Z Male WLB031E11 -(0.23–0.29)
PAM Z Male RJB064A12 -(0.15–0.39)
PAM Z Male WLA096C08 -(0.35–0.47)

PAR-3 Z Male ChEST812E15 -(0.47–0.59)
PG-M Z Male ChEST376N5 -(0.18–0.41)

PIP5K1B Z Male WLA025H03 -(0.16–0.37)
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autosomal (P311) or unknown location (ACAA2 and
CETN3), all with higher expression in males (Table 5).
Errors in the microarray were uncovered for 6 of 11 genes
that could not be confirmed by real-time PCR (Tables 4
and 5). For example, the microarray spots thought to rep-
resent the male-enhanced autosomal genes AATF and
ACAD8 were found to contain EST clones representing the
Z-linked genes RPS6 and PLAA, respectively (Table 5).
Two of the microarray clones showing female-enhanced
expression that could not be confirmed by real-time PCR
were found to be erroneous and contain repetitive
sequences (data not shown), whereas two such clones
(representing the autosomal genes CEZANNE2 and
NAT5) appeared to be correctly annotated (Table 5). The
discrepancy between microarray and real-time PCR data
for non-sex chromosomal gene expression remains unex-
plained. Unspecific cross-hybridization of sex chromo-
some-linked target cDNA to non-sex chromosomal array
probes may be one possibility. Because of this uncertainty
we decided not to further follow up on non-sex chromo-
somal candidates. Only microarray data on sex-chromo-
somal genes are reported in Table 2 (for the whole data set
of 146 clones, see Additional File 2). We confirmed the
absence of differential expression for the autosomal gene
MAT1, a gene selected for PCR analysis because of its func-
tional association with other genes identified as differen-
tially expressed (see Discussion).

Discussion
Relatively little is known about the genes that are involved
in neuronal sex differentiation in birds, whether influ-
enced by gonadal steroid hormones or not. In the present
study we used cDNA microarrays to identify genes that are
differentially expressed between males and females in the
developing chicken brain (or whole head) before (ed4)
and during (ed6, 8 and 10) morphological differentiation

of the gonads. We found statistical significance (adjusted
p-value < 0.0005) for differential expression of 146 micro-
array clones across the embryonic stages and types of tis-
sue sample (whole head for ed4 and 6, and brain for ed8
and 10). These clones correspond to ~1.4% of the
~10,700 clones included in the analysis. Using real-time
PCR we were able to confirm female expression for all
three W-linked genes identified, and the differential
expression of all ten Z-linked genes tested and three genes
with autosomal or unknown location. The real-time PCR
analysis furthermore revealed one false negative among Z-
linked genes (TXN), and some false positives among
genes located on autosomal or unknown chromosomes.
In many cases, however, this could be traced to errors in
the microarrays.

A major finding was that sex-specific differential expres-
sion could be detected for numerous genes already at the
earliest studied embryonic stage (ed4), before the stage
(~ed5) at which the earliest sex differences in gonadal
gene expression with regard to steroidogenesis have been
found [15,16,21]. Expression of several genes for ster-
oidogenic enzymes (P450scc, P450c17, 3-βHSD,
17βHSD, and aromatase) in chicken gonads already on
ed4 has been documented, but no sex-dependent expres-
sion differences [21]. Even if we cannot rule out the pos-
sibility that hormonal differences between males and
females may exist on ed4, the early sex-specific expression
of the genes reported in the present study may be prima-
rily regulated by other mechanisms than hormonal con-
trol. In favor of this notion, we found no apparent
relationship between the expected differences in hormo-
nal levels associated with gonadal differentiation [12] and
the magnitude of the expression differences between the
sexes for these genes (Figure 3). Moreover, our prelimi-
nary data from chicken embryos exposed to ethinyl estra-

PLAAd Z Male RJB016B03 -(0.60–0.76)
RAD1 Z Male ChEST963P4 -(0.45–0.66)
RAD17 Z Male RJA010B11 -(0.18–0.38)
RASA1 Z Male ChEST57017 -(0.58–0.70)
RPS6 Z Male WLB048H08 -(0.45–0.70)
RPS6e Z Male WLB065B04 -(0.47–0.67)
RPS23 Z Male WLA053B06 -(0.67–0.80)

SMAD2 Z Male WLA084F02 -(0.32–0.42) Confirmed (table 4)
SOLT Z Male ChEST368P13 -(0.49–0.71) Confirmed (table 4)
SPINZ Z Male ChEST720C2 -(0.32–0.44) Confirmed (table 4)
TINP1 Z Male WLB058A04 -(0.64–0.74) Confirmed (table 4)
TLE4 Z Male RJA118C01 -(0.11–0.39)
VCP Z Male WLA025D11 -(0.13–0.28)

ZNT-5 Z Male WLB088E10 -(0.41–0.56)

a Chromosome
b Can be used to search against GenBank
c Log2 female/male (min – max) lists the range of average expression differences between females and males between ed4 and ed10.
d Original annotation of spotted clone was RJB020E03, which codes for autosomal ACAD8.
e Original annotation of spotted clone was WLB065A04, which codes for autosomal AATF.

Table 2: Differentially expressed clones located to sex chromosomes (Continued)
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diol in ovo on ed4 show that the expression in the brain on
ed10   for the majority of these genes is virtually unaf-
fected by treatment in either sex (work in progress).

Gene expression differences independent of gonadal hor-
mones have previously been suggested to play critical
roles in the sexual differentiation of the brain in birds [22]
and mice [23]. Why an apparently different set of genes
should be involved in the chicken compared to the mouse
[23] is unclear. That such a large proportion of genes
located on the sex chromosomes (Z and W) were identi-
fied as differentially expressed in the chicken is therefore
intriguing considering the independent evolution and dif-
ferent gene content of the sex chromosomes in birds and
mammals [24].

A majority of the genes indicated to be differentially
expressed from the microarray analysis were more highly
expressed in males than in females, and about half of
these genes are located on the Z chromosome. This raises
the issue of dosage compensation versus biallelic expres-
sion of Z-linked genes in males [25]. Although biallelic
expression has previously been demonstrated [26,27],
and might be inferred from the close to two-fold higher
expression in males of many Z-linked genes in our study,
the expression levels of some Z-linked genes were found
both by microarray and PCR analysis not to differ signifi-
cantly between the sexes. Such a lack of sex differences in
the expression of certain genes located on the Z chromo-
some would be in line with previous evidence for dosage
compensation [28]. Taken together, our results suggest
that if dosage compensation does occur in chicken it is
unlikely to involve a widespread inactivation of the Z
chromosome similar to that of the mammalian X chro-
mosome. Studies by McQueen and coworkers [28] in
chicken embryos have shown that at least six genes on the

Z chromosome are dosage compensated. However,
Kuroda and coworkers [26] found that transcription of
five genes, including two of the genes studied by
McQueen and coworkers [28], is taking place on both Z
chromosomes of male chicken. This provides further sup-
port that dosage compensation in birds does not involve
inactivation of a large majority of genes on the Z chromo-
some.

That epigenetic mechanisms such as methylation and
acetylation may be involved in the sex-specific expression
of genes located on the Z chromosome has previously
been implicated by the female-specific expression of the
Z-linked MHM region [20,29]. In agreement with this, our
microarray results showed high female/male ratios sug-
gestive of expression in females only of two distinctive
transcripts containing an MHM region. Whether these
transcripts, represented by microarray clone RJA001B0
(Table 2) and GenBank entry AB046698[20], respectively,
are expressed from the same or independent genomic
regions is unclear. Their highly similar MHM regions (141
nucleotides with 98% identity) and their female-specific
expression indicate some common function, possibly the
repression of the adjacent gene DMRT1, suggested as a
conserved sex determining gene [30-35], through the
accumulation of a non-coding RNA [20]. However, unlike
in male gonads before and during gonadal differentiation
[32,36,37], we found no evidence of male-enhanced
expression of DMRT1 in the embryonic chicken brain.

We found high female/male expression ratios on ed4 for
three genes/clones (WPKCI-8, SPINW and ABWT) located
on the female-specific W chromosome, indicating signifi-
cant early expression in the female embryonic brain.
Because of its early expression (ed4.5) in the developing
female gonads [38,39], WPKCI-8 (also known as ASW)

Table 3: W-linked genes

Log2 female/male

ed4a ed8a

Gene Arrayb PCRb p-value Arrayb PCRb p-value Note

ABWTc 1.78 8.73 ∞ p < 0.05 2.87 NAf NAf

SPINW 0.27 11.50 ∞ p < 0.05 0.49 NAf NAf

UBE2R2 NSe NDEd - NSe NAf NAf

WPKCI-8 4.05 13.36 ∞ p < 0.05 1.58 NAf NAf

a Embryonal day 4/8.
b Array and PCR values are given as log2 female/male ratio expression differences
c ABWT is a clone expressed in females and is located adjacent to the UBE2R2 gene.
d No differential expression
e Not spotted on the microarray.
f Not available
∞ Expressed only in females
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has been suggested to be involved in avian sex determina-
tion [13]. Early WPKCI-8 expression (ed5) has also been
detected in the spinal cord, spinal ganglion, and myo-
tomes [38]. The WPKCI-8 gene, which is reiterated
approximately 40 times on the W chromosome [25], and
its single-copy homolog on the Z chromosome HINT [25]
both encode proteins belonging to the Hint family of
dimeric nucleotide hydrolases [38]. The Wpkci-8 protein,
however, lacks the histidine triad (HIT) motif [25] and
appears to act as a dominant suppressor of Hint activity,
possibly by conferring signals for mislocalization or deg-
radation of the Hint/Wpkci-8 heterodimers [40] (Figure
6). It is an interesting possibility that suppressed levels of
active Hint in the brain of female chicken embryos, result-

ing from both lower expression of the HINT gene itself
and inhibition by expressed Wpkci-8, could contribute to
sexual differentiation of the nervous system. Female
expression of WPKCI-8 and male-enhanced expression of
HINT has previously been detected in the telencephalon
of juvenile zebra finches [41]. The Hint protein (also
known as protein kinase C inhibitor/interacting protein)
is well conserved between species [38,39], but whether
this protein is involved in sex determination or sexual dif-
ferentiation in various species is unclear.

We found male-enhanced expression for two Z-linked
genes (CCNH and CDK7) known to encode subunits of
the cyclin-dependent kinase activating kinase (CAK) com-
plex, and a third one (BTF2-P44) encoding a subunit of
the transcription factor II H (TFIIH) core complex.
Together these complexes constitute the basal transcrip-
tion complex TFIIH, which is involved in transcription,
DNA repair, and cell-cycle control [33]. Among the genes
encoding the nine proteins (CDK7, CCNH, MAT1,
ERCC2, ERCC3, BTF2-P34, BTF2-44, BTF2-52, BTF2-62)
in this complex [33], two (ERCC2 and BTF2-52) appear to
be less conserved in the chicken genome (see Additional
Files 6 and 7). The implications of the male-enhanced
expression of some but not all components of CAK (we
found no differential expression for its third component
MAT1) and the TFIIH core complex remains to be eluci-
dated. However, it is intriguing that both CAK and TFIIH
are involved in estrogen receptor α (ERα) and androgen
receptor (AR) transactivation in mammals [42-45], and
that a functional CAK is important for both the mitotic
and meiotic cell cycle [46-48]. The proteins encoded by
the Z-linked genes HINT and APTX, are both members of
the HIT protein superfamily [49]. APTX, which in the
microarrays is more highly expressed in males, encodes
aprataxin, a protein involved in single-strand break repair
[50,51] and Hint seems to function as a positive regulator
of components of TFIIH [40], including the CCNH
homolog Ccl1 [52]. Considering the role of TFIIH in
DNA-repair, a sex specific control of DNA repair seems
possible. In addition to TFIIH components, three other Z-
linked genes associated with DNA repair (RAD1 [53],
MSH3 [54], and DHFR [55]) were found in the microarray
result to be more highly expressed in males.

Analogous to the sex-dependent expression of WPKCI-8
and HINT, the W-linked gene SPINW was expressed in
females while the Z-linked homolog SPINZ showed male-
enhanced expression. SPINW, which is prominently
expressed in ovarian and somatic tissues, has been sug-
gested to be involved in gonadal differentiation [56], but
the early (ed4) sex-specific expression of these genes in the
brain may indicate a more widespread involvement in
sexual differentiation. We also identified a W-linked tran-
script, ABWT, which in addition to being expressed in the

Relative location of Avian brain W-linked transcript (ABWT) in the W chromosomeFigure 4
Relative location of Avian brain W-linked transcript (ABWT) 
in the W chromosome. The sequence of EST clone 
WLA084D05 (ABWT) aligns to the chicken W chromosome 
adjacent (~300 nt) to the gene encoding the chicken candi-
date for ubiquitin-conjugating enzyme E2R2 (UBE2R2). Infor-
mation for the relative locations was retrieved from the 
UCSC Genome browser [19] and encompasses the region in 
chrW_random:1-455,598 (also see Additional File 3).
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early female embryonic brain has also been found in
cDNA libraries from chicken ovaries and heart (UniGene
entry Gga.16155). ABWT maps to the genome in the
vicinity of the homolog to mouse Ube2r2 (i.e. chicken
gene UBE2R2), a gene belonging to the E2 family of ubiq-
uitin-conjugating enzymes [57]. As we were unable to
detect any differential expression of UBE2R2 transcripts,
however, the detected ABWT transcripts appear to be dis-
tinct from these. It remains to be determined whether
ABWT is a splice variant of a UBE2R2 transcript, a novel
gene encoding a yet unidentified protein or a non-coding
RNA.

Conclusion
In conclusion, this study provides hints to mechanisms
behind sexual differentiation of the nervous system in
birds and raises several new questions. The expression of
W-linked genes supports the presence of 'sex-control
genes' similar to the mammalian SRY gene, in addition to
the possible gene dosage effects from genes on the Z chro-
mosomes. Future studies will reveal if the W- and Z-linked
genes are differentially expressed in the early embryonic
brain of different bird species and if differential expres-
sion of these genes is present also in other tissues. It
should be noted, however, that WPKCI-8, an apparent key
player in sexual differentiation [13,38], is not reiterated
on [38], and may even not be linked to [39], the W chro-
mosome of the primitive ratites (emus and ostriches). The
crucial importance of sex steroids for organization of the
brain and behavior in birds has been shown in several
studies (as reviewed by Balthazart et al [58] and Panzica et

al [59]), but the results presented in this paper point
toward the possible presence also of a genetic component
in sex-specific neuronal differentiation. Consequently, it
seems likely that genetic and hormonal control interact to
organize the avian brain dimorphism during differentia-
tion.

Methods
Embryos and sample collection
Fertilized eggs from White Leghorn fowl were purchased
from OVA Production (Morgongåva, Sweden). The eggs
were incubated at 37.5°C and 60% relative humidity, and
were turned every 3 hours. After 8 or 10 days of incuba-
tion (ed8 and ed10), whole brains were dissected out. As
brains could not be excised in a reproducible way from
earlier embryos (ed4 and ed6), whole heads were col-
lected. Heads were excised along a line from the mandib-
ular and maxillary processes of the first pharyngeal arch to
the caudal boundary of the myelencephalon (ed4), or
from immediately in front of the maxillary process to the
caudal boundary of the myelencephalon (ed6). Samples
were immediately frozen in liquid nitrogen, and stored at
-70°C. A tissue sample from each embryo was also col-
lected for DNA isolation and genetic sexing according to a
PCR-based method [60] in which intron sequences of dif-
ferent lengths in the W-linked gene CHD1W (females)
and Z-linked gene CHD1Z (both sexes) are amplified.

RNA isolation
Total RNA was isolated using the Micro-to-Midi Total
RNA Purification System (Invitrogen, Carlsbad, CA). Any

Comparison of MHM transcriptsFigure 5
Comparison of MHM transcripts. Alignment between the sequence of the EST clone RJA001B07 (787 nt) and the Z-linked 
MHM-region sequence AB046698 (2332 nt), showing a 141-nt region with 98% sequence similarity (blue boxes). The yellow 
fields are the regions of BLAT alignment to the Z-chromosome (RJA001B07: chrZ:9,422,551-9,422,655 and AB046698: 
chrZ:9,422,028-9,423,285) in the first assembly of the chicken genome [19]. Also indicated are the approximate locations of 
the two primer pairs used in the real-time PCR to confirm the higher expression in females of each MHM transcript.
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contaminating genomic DNA was digested by DNase
treatment (DNA-free, Ambion, Austin, USA), according to
the manufacturer's recommendations. RNA quality was
checked using the Agilent 2100 Bioanalyzer and the RNA
6000 LabChip (Agilent Technologies, Palo Alto, CA,
USA). Only high quality RNA, with no signs of degrada-
tion, was used for further experiments.

Microarrays
Spotted cDNA microarrays, containing 1,136 expressed-
sequence-tag (EST) clones from a cDNA library of devel-
oping chicken brain [9] and 12,771 EST clones from four
cDNA libraries from brain and testis of White Leghorn
and Red Jungle Fowl [10], spotted in duplicate, were pur-
chased from the Royal Institute of Technology, Stock-
holm, Sweden [61]. Annotation and chromosome
localization of the spotted clones can be found at the
Stockholm Bioinformatics Center (SBC) [62].

Experimental design
Four microarray hybridizations were done for each
embryonic stage (ed4, 6, 8 and 10), addressing biological
and technical variation through a pooling and dye

reversal strategy (Figure 1A). Equal amounts of total RNA
extracted from eight male and eight female individual
embryos were mixed in four pools with RNA from 4
embryos of the same sex in each pool.

This design, which we adopted from Churchill [63], is a
trade-off between the need for biological and technical
replication while keeping down animal consumption and
microarray use. Although pooling is intended to average
between individuals there is a risk that single individuals
may bias the sample. Individual variation among the
embryos included in the pools was addressed in the PCR
analysis (see below), and was found to be relatively mod-
est for the randomly selected individuals assayed (see
Additional File 3). Moreover, four additional microarray
hybridizations were done for ed10, using an alternative
design (Figure 1B) in which all samples were derived from
individual embryos and using other embryos than in the
pooling strategy.

cDNA synthesis and microarray hybridization
Labeling of cDNA for microarray hybridization was done
using the 3DNA Array 350 Expression Array Detection Kit

Table 4: Z-linked genes

Log2 female/male

ed4a ed8a

Gene Arrayb PCRb p-value Arrayb PCRb p-value Note

ANXA1c NDEe NDEe - NDEe NDEe

BTF2-P44 -0.26 -0.44 0.06 -0.22 -0.73 p < 0.05
CCNH -0.71 -1.09 p < 0.05 -0.44 NAg

CDK7 NSf -0.54 0.12 NSf -0.67 p < 0.05
CLA -0.46 -1.12 p < 0.05 -0.28 NAg

DHFR -0.71 -1.00 p < 0.05 -0.56 NAg

DMRT1 NAg NDEe - NDEe -
HINT NSf -1.17 p < 0.05 NSf -1.35 p < 0.05

HMGCOA -0.37 -0.68 p < 0.05 -0.32 NAg

SMAD2 -0.32 -0.8 p < 0.05 -0.42 NAg

SOLT -0.71 -0.95 p < 0.05 -0.49 NAg

SPINZ -0.32 -0.8 p < 0.05 -0.21 -1.35 p < 0.05
TINP1 -0.63 -0.93 p < 0.05 -0.74 NAg

MHM array cloned 2.57 8.21 p < 0.05 0.44 NAg

MHM GenBankd NSf 7.73 p < 0.05 NSf NAg

TXNc 0 1.05 p < 0.05 NAg NAg Contaminated by vector sequence
ZO-2c NDEe NDEe - NDEe NAg

ZOV3c NDEe NDEe - NDEe NAg

a Embryonal day 4/8.
b Array and PCR values are given as log2 female/male ratio expression differences
c ANXA1 (Annexin 1), TXN (Thioredoxin), ZO-2 and ZOV3 were randomly chosen as not differentially expressed Z-linked genes.
d Two MHM transcripts are listed; RJA001B07 (spotted on the array) and AB046698 (GenBank).
e No differential expression
f Not spotted on the microarray.
g Not available
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(Genisphere Inc., Hatfield, PA) according to the manufac-
turer's protocol and recommendations. Briefly, total RNA
(20 µg) was oligo-dT-primed with Cy3- or Cy5-capture-
sequence primer (see Figure 1 for dye reversal scheme),
and reverse transcribed using SuperScript II Reverse Tran-
scriptase (Invitrogen, Carlsbad, CA). For cDNA hybridiza-
tion, 5 µg cDNA was mixed with 1 µl mouse COT-1 DNA
and either regular (ed8 and ed10S) or Enhanced (ed4,
ed6, ed10) hybridization buffer. After hybridization at
60°C for 16 hours, microarray slides were washed on a
rocking platform, first with 2 × SSC containing 0.2% SDS
for 10 min at 55°C, followed by 2 × SSC and 0.2 × SSC for
10 min each at room temperature. 3DNA hybridization
was performed at 60°C for 2.5 hours, followed by washes
as for the cDNA hybridization.

Microarray data analysis
The microarrays were scanned with a GenePix 4000B
scanner (Axon, Foster City, CA) at 10 µm resolution. The
photomultiplier tube voltage settings were varied to
obtain maximum signal intensities while saturating less
than 0.1% of the spots. Images were analyzed with the
GenePix Pro 5.0 (Axon) software, utilizing the option to

find irregular features. Spots with visible artifacts or con-
taining fewer than 35 pixels were manually flagged as bad.
As each array contained the same clone spotted in dupli-
cate in each half of the array, the average of the two dupli-
cate spots was calculated for each array. If one of the
duplicate spots was missing or flagged bad, the value was
based only on the remaining spot. The base 2 logarithm
(log2) ratio of the median spot intensity for each channel
was used to quantify the fold difference in relative gene
expression levels. Since all arrays had low background, no
background subtraction was done. To remove systematic
sources of variation, within-print-group loess normaliza-
tion [64] was done, in which the relative weight of 0.1 was
given to spots flagged as missing or bad. To identify clones
differentially expressed between females and males inde-
pendently of embryonic stage (ed4, 6, 8 or 10), tissue ori-
gin (brain or whole head), or experimental design (pools
or individuals; see above), the arrays were collapsed
across these parameters, resulting in 12 biologically inde-
pendent samples per gender analyzed on 20 arrays.

Clones for which values were obtained for less than 17
(out of 20) arrays were excluded from further analysis,

Table 5: Autosomal genes and genes having an unknown location

Log 2 female/male

ed4a ed8a

Gene Agreement 
between array
and PCR data

Chrb Arrayc PCRc p-value Arrayc PCRc p-value Notes

ACAA2 Yes Ud -0.50 -0.80 p < 0.05 -0.18 -1.00 p < 0.05
CETN3 Yes Ud -0.66 -0.97 p < 0.05 -0.54 -1.29 p < 0.05
MAT1 Yes 5 NDEe NDEe - NDEe NDEe -
P311 Yes 10 -0.77 -0.97 p < 0.05 -0.62 -0.92 p < 0.05
AATF No 19 -0.53 NDEe - -0.67 NAf Real identity is RPS6 from Chr Z

ACAD8 No 24 -0.72 NDEe - -0.74 NAf Real identity is PLAA from Chr Z
CAT-1 No 4 0.97 NDEe - 0.39 NAf

CEZANNE2 No 10 5.00 NDEe - 1.95 NAf

CX3CR No 2 -0.67 0.34 - -0.49 NAf

HERP1/
HEY2

No 3 -0.49 -0.23 - -0.58 NAf Real identity is ChEST696L1 from Chr 12

MPRL3 No 2 0.49 -0.38 - 0.72 NAf Real identity is WLB075E02 (Rep. seq)
from unknown chr. locationg

NAT5 No 7 1.00 -0.27 - 0.74 NAf

PRTD-NY3 No 28 0.67 -0.29 - 0.42 NAf Real identity is RJB067C04 from
unknown chr. locationg

RJA094A01 No 9 0.70 NDEe - 0.45 NAf

ZNF216 No Ud 0.32 0.15 - 0.41 NAf

a Embryonal day 4/8.
b Chromosome
c Array and PCR values are given as log2 female/male ratio expression differences
d Unknown chromosomal localization
e No differential expression
f Not available
g Rep. seq stands for repetitive sequence.
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resulting in 10,792 clones across all arrays. In addition, 90
of the microarray clones known from previous Repeat-
Masker analysis to mainly consist of repetitive sequence
were excluded from further analysis. The moderated t-sta-
tistics and log-odds of differential expression was calcu-
lated using the Limma package version 2.0.4 [17] in the
statistical software R version 2.2.1 [65] (both freely avail-
able). To address the problem with multiple testing, the p-
values were adjusted using the method of Benjamini and
Hochberg [18]. Because of the technical replication of the
pooled samples (Figure 1A), only 12 arrays (not all 20)
were independent measurements. We only considered

clones to be differentially expressed if the adjusted p-value
< 0.0005. Microarray data are available in the ArrayEx-
press database [66] at the accession number E-MEXP-266.

Annotation of EST clones detecting differential expression
We reevaluated gene identities for all differentially
expressed EST clones (146 clones; see Results) by search-
ing The Institute of Genomic Research (TIGR) Chicken
Gene Indices (Release 10.0) [67]. All sequences can be
accessed by using the clone identity in a search against
GenBank database [68]. Functional annotations were
reassessed by RepeatMasker [69] and searching the

Differentially expressed genes related to sex determination/differentiation and/or the TFIIH protein complex (see Discussion)Figure 6
Differentially expressed genes related to sex determination/differentiation and/or the TFIIH protein complex (see Discussion). 
Higher expression in males (ZZ) or females (ZW) of Z-linked and W-linked genes is indicated by arrows pointing upward. 

Short arrows ( ) indicate ≤2-fold difference, and long arrows (↑) indicate >2-fold difference, as determined by real-time PCR. 
Genes not differentially expressed are indicated with a dash (—). Long thin arrows (→) indicate gene product associations. A 
dotted bracket shows the possible interaction between HINT and the TFIIH complex.
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National Center for Biotechnology Information (NCBI)
non-redundant and the Universal Protein Resource (Uni-
Prot) databases [70,71]. The RepeatMasker program
screens nucleotide sequences against a library of repetitive
elements such as interspersed repeats and low complexity
DNA sequences. We discarded sequences with more than
10% repetitive sequence.

Chromosomal localizations in the released chicken
genome [11] were reinvestigated using the BLAST-like
Alignment Tool (BLAT) [72] and the University of Califor-
nia Santa Clara (UCSC) Genome Browser [73]. Designat-
ing functionality to chicken gene products is complicated
by the limited knowledge of the avian genome or pro-
teome. Assuming that well conserved protein regions and

domains reflect similar protein functionality, cross-spe-
cies comparisons of several gene products (see Additional
Files 5, 6, 7) were done using data from the USCS genome
browser, the Ensembl genome browser [74], TIGR chicken
gene indices [75], the Pfam [76] and UniProt databases in
combination with the BLAST2 (default parameters) [77].
The figures in Additional Files 4 and 5 show sequence
similarity and Pfam domains for several of the gene prod-
ucts mentioned in the discussion. Pfam is a database of
multiple alignments of protein domains or conserved
protein regions [78]. The thicker boxes represent Pfam A
domains which are based on manually crafted accurate
multiple protein alignments, whereas the multiple
colored thinner boxes represent Pfam B domains based on

Table 6: Primer sequences

Gene Amplicon (nt) Forward (5'-3') Reverse (3'-5')

AATF 64 TTACCGCTCACTGTTTGGAAGA TCCCGGATGCCAACCA
ACAA2 76 TCTGGTTTCCAGTCCATTGCT CTCCACCACACAGAACCACTTC
ACAD8 70 CATGGCCAAGCTGTTTGCTA GCCCCCGTGCATCTGTAG
ANXA1 78 TGAATGATGATCTTGCTGACAATG CGTTAACATCCGTCCCTTTCC

BTF2-P44 85 CCTCCACCTGCCAGTTCAAC CCTGGTCAGAAAGGGAAGCA
CAT1 71 CACGCTGATGGTGCCCTACT AGCCCACCGCCTTGAAAG
CCNH 73 AACCGAAAGTTTCGCAGCAA GGGCCTCCAGCAGGAAAG
CDK7 78 GGGACAGATCGTGGCTATCAAA TGAGAGCTGTTCTGTTGATTCCA
CETN3 77 GAAATACTCAAGGCGTTCAAATTGT GCAACCCGACGCAGGTT

CEZANNE2 67 CCACAACTGGTGATGGAAACTG CGGTCATGAAATCCCCACAT
CEZANNE2 e! 69 GGCCACAACTGGTGATGGA CGGTCATGAAATCCCCACAT

CLA 51 GTAAGTGGAGAGAGGAGCAAAAGG AGTTTGCATCAAGCTGCTCAAG
CX3CR 74 CACCGTGTCTGCTTCAAGTACTG TATGTGCGGACGTCATAATGATT
DHFR 79 ATGGGCATCGGGAAGGA TGCTGGTCATTCTCTGGAAGTACT

DMRT1 81 GAAGCCTCCCAGCAACATACA CATGGCATGGCGGTTCTC
HERP1/HEY2 68 GCGACCGGAGGTAAAGGTTATT CGGAAGCCAATGCTCATAAAA

HINT 77 ATATTCTGGGAGGTCGTCAGTTG TTGTACACATGCAGCATCTCTTGT
HMGCOA 84 GAAGAAAATAAACCAAACCCTGTAACA GCGACTGTGTGCATGAACAAG

MAT1 62 CCCCTCCCTGAAGCTGATG GCTCCACGCAGCTCTCACA
MHM array clone 76 CAACAGCACTACTGGAGCCATATG GGAAGCCCCTGCAAAGAAG
MHM GenBank 69 GAAATGCCTCGCCCTTTAAGT TGACTGCCCTTGGTTGTCTGT

MRPL3 72 GAGTTGGTGTTGTTGCGGTAA TGACAGCGTGCTTCTTTCCT
NAT5 51 CTGACGGAGACCTACGGCAT CCAGTGTGCCAGGTACTGCA
P311 75 TCATGGTTTCCTTGTGGTAAGTGA TCCAAAATAGCACCATTCATCAGT

PRTD-NY3 68 TCACACGGTCTCCATACCTCAA CCGACAGCCTGCCATCTC
RJA094A01 74 GGGAGGGTGGATCTGTGACA ACAGCCCTTCCCGTAAAAGAG

SMAD2 51 AGTGGGACACAACAGGCCTT CGAGAGATCTGGTTTGTTCAGAGAA
SOLT 61 TTATTAGGAGAAGAAGAGTTGCAGAAAG CTGCTGACAGCACCATTTCAA

SPINW 102 CTGTTCAAGAATAAATAGAATCACAATGG TTCAGTCCTCACATAGTCCAACTTAGTT
SPINZ 101 CCAAGTTCCTGTAAATCCCTCTCTT CAAGCGCAGAAACTCTTTCATCT
TINP1 77 AAGCTGGGAAATGGGAGGTT AAGCTGGGAAATGGGAGGTT
TXN 72 TGATGTGGTGTTCATTGAAATTGA GGCATGCACTTCACATCACAGT

UBE2R2 76 CCAAAGCTGAGGCAGAAAAGG GGCACTTTAGTTTTGATGCAGTACTC
WLA084D05/ABWT 72 TGGGATGGCTGCATGTGTA AACCCCGCCACTGGTATTC

WPKCI-8 51 AGATTGTGGCGCACCTCTTC CACTTCTCGCCAACAATCATCA
ZNF216 67 GCCCCGGCCCCATT GCATTAAAACTACAGAATCCTCTTTGC
ZO-2 83 CCTTTTCTTCCCCTTTTATTAATGCT TCTGTTGCATCAAGTTTATCTCCTAGA
ZOV3 86 CGATACCTGCCTCCAGTGTGT GAGGAACAGACCTATTTACAAACTGAAA
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an automatic clustering of a nonredundant protein data-
base.

Real-time PCR
To confirm the identity as well as the differential expres-
sion of selected genes, samples derived from five individ-
ual embryos of each sex (randomly selected among the
eight that had been pooled for microarray analysis) on
ed4 (and, for some genes, ed8) were subjected to real-time
PCR. Primers were designed with Primer Express software
(Applied Biosystems, Palo Alto, CA, USA), using default
settings for the TaqMan mode, and ordered from DNA
Technology A/S (Aarhus, Denmark). Primers were
designed for amplicons to span exon-exon borders when
possible, as determined by the alignment of EST
sequences against the chicken genome (see above).
Primer sequences are given in Table 6. Primers amplifying
the endogenous reference 18S ribosomal RNA were from
TaqMan® Ribosomal RNA Control Reagents (Applied Bio-
systems). For PCR, 2 µg total RNA was reverse transcribed
in a final volume of 100 µl using TaqMan Reverse Tran-
scription Reagents (Applied Biosystems) with random
hexamer primers according to manufacturer instructions.
Reactions excluding MultiScribe Reverse Transcriptase
(Applied Biosystems) were performed as negative con-
trols. cDNA targets at a 100-fold (for target genes) or
10,000-fold (for endogenous reference) final dilution
were amplified in replicate wells (four for target genes and
six for endogenous reference), using primer concentration
250 nM (reverse and forward primer) for target genes and
50 nM for 18S, respectively, in 1× qPCR Mastermix Plus
for SYBR Green I (Eurogentec, Seraing, Belgium) in an ABI
Prism 7000 Sequence Detector System (Applied Biosys-
tems) with the following thermal profile: 50°C for 2 min,
95°C for 10 min, followed by 40 cycles of 15 sec at 95°C
and 1 min at 60°C in a volume of 25 µl. PCR products
were checked by monitoring melting curves. Standard
curves for each gene were obtained by amplifying (in
quadruplicate) a four-fold dilution series of 1:50 through
1:12,800 final volume of a reference mixture containing
equal amounts of cDNA from all ten individual samples.
For each gene, after removing one outlying value (leaving
three values for target genes and five for endogenous ref-
erence), a mean normalized gene expression (MNE) was
calculated according to Muller et al [79]:

Etarget and Eref denote the efficiency, and CTtarget and CTref
the threshold cycle (CT) of the target and reference gene,
respectively, in the PCR amplification. PCR data for each
gene are reported in Tables 3, 4, 5 (also see Additional File
3). An un-paired Student's t-test, using the MNE values,

was used to determine a statistically significant difference
between the genders (p < 0.05) for each gene. The com-
parative Ct method [80] was used to calculate the average
relative log2 fold difference between males and females
for each gene.

List of abbreviations
ABWT, Avian brain W-linked transcript
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