
POSTER PRESENTATION Open Access

Parallelizing large networks using NEURON-Python
Alexandra H Seidenstein1*, Robert A McDougal2, Michael L Hines2, William W Lytton3,4

From 24th Annual Computational Neuroscience Meeting: CNS*2015
Prague, Czech Republic. 18-23 July 2015

Research on brain organization has become increasingly
dependent on large multiscale neuronal network simula-
tions. Here we describe current usage of the NEURON
simulator with MPI (message passing interface) in
Python for simulation of networks in the high perfor-
mance computing (HPC) parallel computing environ-
ment [1-4]. The mixed ordinary differential equation
(ODE) and event-driven nature of neuronal simulations
offers advantages for parallelization, by allowing each
node to work independently for a period equivalent to
the minimal synaptic delay before exchanging queue
information with other nodes, obviating the need to
exchange information at every time step.
NEURON’s ParallelContext allows access to a few of

the important general collective MPI calls, as well as
calls adapted from prior usages from the LINDA pack-
age, now reimplemented under MPI. From Python, a
NEURON ParallelContext is created using pc = h.
ParallelContext(), where h provides access to
NEURON simulation objects after from neuron
import h, ParallelContext permits the periodic transfer
of spike information via queue exchanges.
Pseudo-random streams must be consistent regardless

of numbers of nodes in order to set connectivity, delays,
and weights that are not fully defined from experimental
studies. These streams are kept consistent regardless of
number of nodes being used and therefore allows for the
simulations to be identical. In order to create this, rando-
mizers are established for particular purposes using NEU-
RON’s h.Random().Random123().[5] The key to
reproducibility is to define each randomizer according to
1. a particular usage, 2. a particular cell (based on a global
identifier or gid), 3. a particular run based on a run iden-
tifier runid: e.g., after for r in randomizers: r.
Random123_globalindex(runid, randomdel.

Random123(id32(’randomdel’), self.gid, 0)
where id32() provides a 32-bit hash for a name: def id32
(obj):return hash(obj)&0xffffffff.
Data saving must be initially managed at node of ori-

gin and then combined across nodes, to be accessible
for analysis or viewing. Given that file saving may occur
incrementally during simulation from different nodes on
different local filesystems, file management becomes
important. There are several ways to handle data saving,
the benefits and applicability of which will be presented.
Spike recordings are created as vectors on a per-node
basis, later consolidated. Other state variables may also be
saved at the same time, or may be recreated later utilizing
a re-run of individual cells with identical stimulation using
NEURON’s PatternStim.
We note that ParallelContext in NEURON permits the

development of hybrid networks using various types of
cells: event-driven cells, integrate-and-fire cells, multi-
compartment cells, as well as complex cells with calcula-
tion of internal chemical milieu. Load balancing in the
hybrid circumstance is a crucial issue, particularly when
some cells are computationally large due to inclusion of
reaction-diffusion mechanisms to develop multiscale
models from molecule to network.

Authors’ details
1Dept of Chemical & Biomolecular Engineering, New York University, NY,
USA. 2Dept of Neurobiology, Yale University New Haven CT, USA. 3Kings
County Hospital Center, Brooklyn, NY, USA. 4Dept. of Physiology &
Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA.

Published: 18 December 2015

References
1. Carnevale NT, Hines ML: The NEURON Book Cambridge University Press,

New York; 2006.
2. Hines ML, Carnevale NT: NEURON: a tool for neuroscientists. Neuroscientist

2001, 7:123-135.
3. Hines ML, Carnevale NT: Translating network models to parallel hardware

in neuron. J Neurosci Methods 2008, 169:425-455.
4. Migliore M, Cannia C, Lytton WW, Hines ML: Parallel network simulations

with NEURON. J. Computational Neuroscience 2006, 6:119-129.

* Correspondence: ahs@neurosim.downstate.edu
1Dept of Chemical & Biomolecular Engineering, New York University, NY,
USA
Full list of author information is available at the end of the article

Seidenstein et al. BMC Neuroscience 2015, 16(Suppl 1):P151
http://www.biomedcentral.com/1471-2202/16/S1/P151

© 2015 Seidenstein et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:ahs@neurosim.downstate.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


5. Salmon JK, Moraes MA, Dror RO, Shaw DE: Parallel random numbers: as
easy as 1,2,3. Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, November 12-18,
2011, Seattle, Washington 2011.

doi:10.1186/1471-2202-16-S1-P151
Cite this article as: Seidenstein et al.: Parallelizing large networks using
NEURON-Python. BMC Neuroscience 2015 16(Suppl 1):P151.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Seidenstein et al. BMC Neuroscience 2015, 16(Suppl 1):P151
http://www.biomedcentral.com/1471-2202/16/S1/P151

Page 2 of 2


	Authors’ details
	References

