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Introduction
Neurons process stimuli as joint groups [1]. With multi-
electrode arrays being capable of recording hundreds of
channels in parallel the need for computational methods
arises to efficiently find hints for such groups in the
recorded data. Enumerating all possible subsets of neurons
becomes quickly unfeasible if not virtually impossible to
do. Therefore, we developed methods for efficiently find-
ing so-called assemblies of synchronously firing neurons
in spike train data [2,3]. However, these methods only
consider nearly synchronous single activations of neurons
and ignore the non-stationary firing rates. It has been
shown that the bursting behavior of neurons is a different
mode of communication between neurons and has to be
considered in the analysis as well [4,5].

Method
Our method builds upon a previously released algorithm
that was intended to find synchronously activated neu-
rons in parallel spike train data. This method uses dyna-
mically placed windows, centered on each single spike, to
detect episodes of increased synchrony among the spike
trains. By calculating the amount of overlap between a
single spike train and the complete set of spike trains
new features can be generated. These features allow to
identify groups of neurons that show an increased
amount of synchronous activations compared to what
would be expected under the assumption of indepen-
dence. By allowing the algorithm to utilize information
obtained from the burst detection process (e.g. [6-10]) we
can efficiently and effectively identify those groups of
neurons that show increased synchronous bursting
behavior.

Conclusion
Using artificially generated data we are able to test our
method on a multitude of data sets for which we actually
know the true assembly structure. The spike trains are
generated in such a way, that their statistical properties
match those of in vitro recordings of embryonal cortical
slices, i.e. the inter-burst interval and intra-burst inter
spike interval distributions match. With this setup we
test our algorithm on different assembly numbers and
sizes. We are then able to distinguish between non-
related and related neurons as well as to separate the
related ones into different assemblies.
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