Poster presentation

Open Access

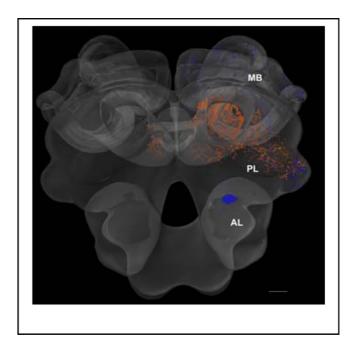
The HoneyBee Standard Brain (HSB) – a versatile atlas tool for integrating data and data exchange in the neuroscience community Jürgen Rybak^{*1}, Anja Kuß², Wolfgang Holler³, Robert Brandt³, Hans-Christian Hege², Martin Nawrot^{1,4} and Randolf Menzel¹

Address: ¹Neurobiology, Free University, Berlin, 14195, Germany, ²Zuse Institute Berlin (ZIB), Berlin, 14195, Germany, ³Visage-Imaging, Berlin, 12163, Germany and ⁴G-Node, Ludwig-Maximilians-Universität Munich, Martinsried 82152, Germany

Email: Jürgen Rybak* - jrybak@neurobiologie.fu-berlin.de

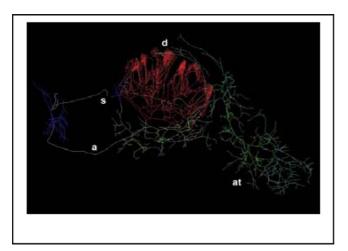
* Corresponding author

from Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Berlin, Germany. 18–23 July 2009


Published: 13 July 2009 BMC Neuroscience 2009, 10(Suppl 1):P1 doi:10.1186/1471-2202-10-S1-P1

This abstract is available from: http://www.biomedcentral.com/1471-2202/10/S1/P1

© 2009 Rybak et al; licensee BioMed Central Ltd.

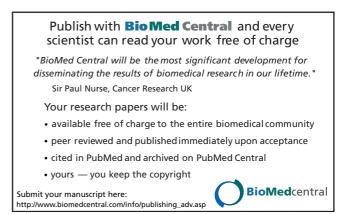

The HoneyBee Standard Brain (HSB) serves as an interactive tool for comparing morphologies of bee brain neurons and relates it to functional as well as biological properties [1]. Recent efforts by several labs have accumulated confocal image stacks from extra- and intracellular stained neurons in the bee central nervous system [2]. We present a pipeline through which confocal images of neurons can be traced and presented in a common space (Figure 1). The first step is an automatic extraction of the neuron's skeleton based on threshold segmentation. In a second step this skeleton can be edited using semi-automatic and interactive tools within Amira's Filament Editor. Hereby, the user is assisted by displaying maximum intensity projections and 3D representations in two separate viewers. Next the skeletonized neuron can be labeled (i.e. annotated) by using multiple sets of hierarchically organized label attributes (Figure 2). Finally, the neuron's topological and metric features can be visualized, statistically analyzed and/or exported to a simulation package such as Neuron.

The neuronal anatomy of the bee brain can be visualized through 3D reconstructions using an ontology those surface-based reconstructions are organized hierarchically into structures and substructures. The ontology also contains relations between the structures and is further linked to our surfaces. By means of the structured and information enhanced data we are able to create semi-automatic

Figure I

Olfactory (blue) and central (orange) neurons registered into the HSB. MB: mushroom body, AL: antennal lobe, scale: 100 μm. effective visualizations [3]. In cooperation with the German Neuroinformatics Node (G-Node, http://www.gnode.org) the HSB will be integrated into a new honeybee brain platform for sharing data, models and tools in order to spur scientific productivity across experimental and theoretical disciplines. The future challenge will be to integrate anatomical reference and morphological reconstructions with electrophysiological, imaging and molecular (e.g. gene expression) data in a meaningful and flexible manner. The currently developed ontology tools will play a central role in achieving our goals. Ultimately, this will allow the user to specify a certain cell type in order to retrieve morphologies along with a physiological characterization and related models. In the ideal situation different types of physical data, morphology and physiological recordings, exist for the very same neuron [4].

Figure 2


The Pel neuron of the central bee brain. Multi-coloring represents different brain regions. s: soma, a: axon, d; dendrite, at; axon terminals.

Acknowledgements

Daniel Münch for providing morphological data in Figure 1.

References

- Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R: Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 2005, 492:1-19.
- 2. Honeybee brain atlas [http://www.neurobiologie.fu-berlin.de/ beebrain/]
- Kuß A, Prohaska S, Meyer B, Rybak J, Hege HC: Ontology-based visualisation of hierarchical neuro-anatomical structures. Proc Visual Computing for Biomedicine 2008:177-184.
- Krofczik S, Menzel R, Nawrot MP: Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosci 2008, 2:9. doi:10.3389/neuro.10.009.2008

